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CAUSALITY AND CAUSAL 
INFERENCE IN MEDICINE

Julian Reiss

1. Inferring and Interpreting Causal Claims

Causal claims such as (1) “HPV types 16 and 18 are responsible for 70% of cervical cancers,” 
(2) “Antipsychotic medications are effective in treating acute psychosis and reducing the risk of 
future psychotic episodes,” (3) “Keeping weight under control, exercising, eating healthily, and 
not smoking prevent diabetes type- 2,” or (4) “Hal’s exposure to vinyl chloride monomer caused 
his angiosarcoma” are widely used in medicine, epidemiology, public health, and elsewhere. 
Arguably, this is for good reason: causal claims allow us to explain medical outcomes, both at the 
population level (claim 1) and the individual level (claim 4); they can help to predict outcomes 
(claim 2); they underwrite treatment decisions (claim 2) and public health policies (claim 3); and 
they can help to attribute responsibility (join claim 4 to the claim that Hal’s employer behaved 
negligently by exposing him)—all important aims of the health sciences and beyond.

Knowledge of causal claims is a good thing, then. However, their usefulness depends on the 
extent to which we can reliably learn causal relationships from data, the extent to which what 
we can learn from the data is unambiguous, and the extent to which causal knowledge actu-
ally does help to realize these more ultimate purposes. This chapter will examine these three 
issues in turn, starting with the learning of causal relationships from data, then moving on to 
the interpretation of causal claims, and finally addressing the usefulness issue. Throughout, 
I will use vinyl chloride carcinogenicity as a central example. Vinyl chloride is a compound 
widely used in the production of polyvinyl chloride (PVC). Before it was classified as a human 
carcinogen by the International Agency for Research on Cancer (IARC), the U.S. Environ-
mental Protection Agency (EPA), and similar bodies in the 1970s, and then regulations were 
tightened in response, workers in PVC manufacturing plants were often exposed to the sub-
stance over long periods of time and suffered adverse health consequences, including the very 
rare condition angiosarcoma of the liver.

2. Inferring Causal Claims

It would be as imprudent as it would be uncouth to talk about causal inference in medicine 
without beginning the discussion with the so- called Hill criteria for causation, named after  
Sir Austin Bradford Hill (1897–1991), a British epidemiologist and statistician. He was con-
cerned with how to distinguish genuinely causal from spurious associations. Medical researchers 
at the time were fully aware that an association between a risk factor such as diet and a medical 
outcome such as diabetes could be due to numerous reasons other than the risk factor causing 
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the disease. Hill proposed the following criteria for causation (Hill 1965; the descriptions are 
paraphrased rather than directly quoted):

(1) Strength. The stronger the association, the more likely it is causal.
(2) Consistency. If the association has repeatedly been observed by different persons, in differ-

ent places, circumstances, and times, it is more likely to be causal.
(3) Specificity. The more specifically the risk factor, outcome, or both can be defined, the more 

likely an association between them is causal.
(4) Temporality. The more closely the temporal dimension of an association is aligned with our 

expectations, the more likely it is causal.
(5) Biological gradient. If there is a dose- response curve, the association is more likely to be causal.
(6) Plausibility. If the causal relation appears plausible on the basis of our background knowl-

edge at the time, it is more likely to be causal.
(7) Coherence. The causal interpretation of the association should be coherent with general 

known facts about the natural history of the disease and its biology.
(8) Experiment. If the association has been established in an experiment or quasi- experiment, 

it is more likely to be causal.
(9) Analogy. If there is a strong analogy between the risk factor and a known cause of the 

disease, it is more likely to be causal.

None of these “viewpoints,” as Hill sometimes calls them, is either necessary or sufficient for 
causality, nor is the conjunction of all nine sufficient. A strong association can be due to a con-
founder and a weak one causal. Plausibility is, as duly noted by Hill, relative to the biological 
knowledge of the day, which may be imperfect. There may not exist any analogies or experi-
mental evidence. Nevertheless, each “viewpoint” can be regarded as a fallible indicator—rather 
than a strict criterion—of causality.

To see how the items on Hill’s list can perform the role of fallible indicators of causality, it is 
useful to distinguish two competing approaches to causal reasoning in the biomedical sciences: 
the experimentalist on the one hand and the inferentialist on the other (cf. Parascandola 
2004). The experimentalist approach maintains that randomized experiments are the “gold 
standard” of causal inference and discounts evidence about causal claims from other sources. 
Evidence- based medicine and other movements that carry the “evidence- based” label are 
rooted in the experimentalist approach. Inferentialism, by contrast, holds that causal claims 
are inferred from diverse bodies of evidence—bioassays, laboratory experiments with animal 
models, cohort and case- controlled studies, case reports, clinical trials—using pragmatic guide-
lines such as Hill’s. The approach is very widely used in biomedical research, but inferentialists 
tend to be less vocal than their evidence- based colleagues.

One way to defend experimentalism is to assume a specific interpretation of causality and 
then proceed to show that under that interpretation of causality, positive results of certain 
kinds of experiments guarantee the truth of the associated causal claim. A view of causality 
that has been very popular recently is James Woodward’s, according to which one variable X 
(directly) causes another variable Y if and only if there is a possible intervention (intervention 
variable I) on X that changes Y or its likelihood of occurring (Woodward 2003: 55). Interven-
tion variable I, in turn, has the following characteristics (Woodward 2003: 98):

I1. I causes X.
I2. I acts as a switch for all the other variables that cause X. That is, certain values of I are 

such that when I attains those values, X ceases to depend on the values of other variables 
that cause X and instead depends only on the value taken by I.
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I3. Any directed path from I to Y goes through X. That is, I does not directly cause Y and is 
not a cause of any causes of Y that are distinct from X except, of course, for those causes of 
Y, if any, that are built into the I- X- Y connection itself; that is, except for (a) any causes 
of Y that are effects of X (i.e., variables that are causally between X and Y) and (b) any 
causes of Y that are between I and X and have no effect on Y independently of X.

I4. I is (statistically) independent of any variable Z that causes Y and that is on a directed path 
that does not go through X.

In a biomedical experiment, the intervention is the assignment of a member of a test popula-
tion (e.g., a population of animal models) to a treatment or control group. In one experiment, 
360 Swiss mice were exposed to different concentrations of vinyl chloride (VC) 4 hours daily 
on 5 days per week for 30 weeks (Maltoni and Lefemine 1974). The assignment to a treatment 
group causes the level of exposure (I1). The level of exposure to VC is controlled by the experi-
ment so that it no longer depends on other variables (e.g., proximity to a PVC manufacturing 
plant; I2). The assignment to a treatment group does not cause cancer through a mechanism 
that bypasses exposure to VC (I3). This condition would be violated, for example, if differ-
ent treatment groups received different diets, which in turn affected cancer rates. Finally, the 
assignment to a treatment group is statistically independent of other causes of cancer (I4). This 
condition would be violated, for example, if different strains of mice, which have different 
degrees of cancer susceptibility, were used in different treatment groups. The four conditions 
are illustrated in Figure 6.1.

In clinical trials on human subjects, randomization is an intervention in Woodward’s sense. 
If X is treatment status (with values xt = test treatment and xc = control), and Y a variable 
measuring the difference in medical outcome between treatment and control group, then 
randomization causes X, treatment status, to assume its value xt or xc: the outcome of the ran-
domization process determines whether a patient will be in the treatment or the control group 
(I1). Clinical control will ensure that only patients who are in the treatment group will receive 
the treatment (I2). The outcome of the randomization process will not have a direct effect on 
the value of Y because Y is defined as the difference in medical outcome between the two groups 
and all participants of the trial—patients, doctors, nurses, analysts—are blinded with respect 
to treatment status (I3). Finally, successful randomization will guarantee (at least for large 
samples) statistical independence from other variables responsible for the medical outcome 
(I4). Thus, under a Woodwardian conception of causality, if in a randomized experiment that 
fulfills criteria (I1)–(I4) X and Y are associated, then it must be the case that X causes Y. This 
would appear to support experimentalism.

Critics of experimentalism say two things in response. First, few real clinical trials strictly 
fulfill criteria (I1)–(I4). Compliance (whether or not a patient takes the assigned treatment) 
is rarely perfect, and occasionally treatments are shared between the two groups. Withholding 
treatment status from participants is often not possible or, if it is possible, treatment status 

Figure 6.1 Woodward’s characterization of an intervention variable
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might be revealed if the treatment is actually effective. Randomization guarantees statistical 
independence of other causes of the medical outcome only in infinitely large samples, and test 
populations are often small and never infinite. The critics charge that while experimentalists 
have a good answer why ideal randomized experiments guarantee true causal conclusions, 
they remain silent about the conditions under which reliable causal judgments can be made 
under realistic conditions when experiments cannot be implemented ideally or when the 
causal claim is not open to experimental test. Second, they point out that the bulk of causal 
knowledge in medicine has been established non- experimentally. As one article published 
in the British Medical Journal put it ironically, we do not need a randomized controlled trial 
“to determine whether parachutes are effective in preventing major trauma related to gravi-
tational challenge” (Smith and Pell 2003). Critics maintain that experimentalism makes it 
mysterious that other sources of evidence such as observational studies should reliably support 
causal claims.

Inferentialists regard causal inference as analogous to medical diagnosis. The presence of 
most diseases cannot be directly observed but only inferred on the basis of symptoms. Causality 
can analogously be inferred from “symptoms,” albeit, in general, on the population level rather 
than the individual level. An association between a risk factor and a medical outcome can thus 
be regarded as a symptom of the existence of a causal relation between factor and outcome. 
Medical symptoms rarely point unequivocally to a single disease. Likewise, the symptoms of 
causality have alternative explanations such as confounding (the production of an association 
by a variable associated with risk factor and medical outcome), selection bias (the determina-
tion of treatment status by the patient), experimenter bias (the determination of treatment 
status by the experimenter), attrition bias (patients’ premature exit from the trial at different 
rates between treatment and control arm), diagnostic error/mismeasurement, and so on. Thus, 
like a medical diagnostician, the causal researcher comes to a judgment about the hypothesis 
at stake only after looking at a diverse body of evidence, one function of which is to rule out 
such alternative explanations.

Just as there is no “golden symptom”—a type of test that reliably indicates the presence of a 
disease no matter what the disease is—there is no gold standard of evidence according to the 
inferentialist. There are only bodies of evidence that, if the parts fit together in the right way, 
can make a convincing case for or against a causal claim.

Hill’s viewpoints can play the role of pragmatic criteria that help the inferentialist to come 
to a judgment concerning the causal claim. For example, a strong association [Hill’s no. (1)] 
certainly does not prove a causal relationship—a confounded relationship may well be strong. 
(To use a philosopher’s favorite example, drops in barometer readings are strongly associated 
with the occurrence of storms; the relationship is nevertheless confounded by atmospheric 
pressure.) However, if it is known that the most likely confounder cannot (or most likely does 
not) produce an association of that size, this alternative can be ruled out. This consideration 
helped to eliminate R. A. Fisher’s “constitutional hypothesis” in the 1950s. According to this 
hypothesis, a single genetic factor predisposed people to both lung cancer and taking up smok-
ing, thus accounting for the association between smoking and lung cancer without smoking 
necessarily being a cause of lung cancer. Although genetic factors were known to play a role 
in cancer susceptibility, they could not explain the 60- fold increased risk observed in the data.

On the other hand, weak associations do not disprove a causal relationship either. Vinyl 
chloride was classified as carcinogenic by the IARC in 1974 (IARC 1974a), but despite a surge 
in industrial use of the compound, only very few additional cases of cancer were observed. 
Carcinogenicity could nevertheless be established because exposed individuals developed 
angiosarcomas of the liver. These are so rare that chance or other confounders can hardly 
account for the coincidence of this specific condition [Hill’s no. (3)] among exposed individuals.
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Experimentation [Hill’s no. (8)] plays a role in the inferentialist approach, but like the other 
items on Hill’s list, it is neither necessary nor sufficient for establishing causality. Clinical tri-
als cannot be used to establish carcinogenicity for ethical reasons. Vinyl chloride had been 
established experimentally to cause cancer in animal models before epidemiological studies 
confirmed its carcinogenicity in humans (IARC 2014), but even though all human carcino-
gens have some animal models, there is no guarantee that a substance that causes cancer in 
animals is also harmful to humans.

Although a well- designed randomized trial eliminates a host of confounders all at once, 
according to the inferentialist, no feature of experimental design can guarantee that all poten-
tial errors, including those having to do with the measurement of outcomes, with data analysis 
and reporting, with publication and many other aspects of the inference, have been ruled out. 
Whether or not they have been ruled out remains a judgment that can only be made after the 
entire body of evidence has been consulted. To give an example, for some time there was a 
discrepancy between randomized and observational studies in the effect of hormone replace-
ment therapy on breast cancer, with the randomized studies showing a smaller risk than the 
observational studies. The reason was not, however, that the observational studies were inher-
ently less reliable whereas the randomized studies got it right. The difference lay instead in 
the timing of the studies: the women in the randomized studies had on average been longer in 
menopause before starting the treatment. Reanalyzing the data from the randomized trials by 
adjusting for this temporal gap, the results fell in line and confirmed those of the observational 
studies (Vandenbroucke 2009). This outcome has nothing to do with the design of either trial 
or observational study and could only be reached by a systematic review and analysis of all the 
evidence.

An important issue that has been widely discussed among philosophers of the biomedical sci-
ences concerns the role that evidence about mechanisms plays in causal inference. Risk factors 
do not cause medical outcomes across spatio- temporal gaps but through continuous biological 
pathways or “mechanisms” (sometimes also called “modes of action”). There is no doubt that 
understanding these mechanisms greatly enhances biomedical knowledge and is useful for 
numerous purposes, including the explanation of medical outcomes, improving intervention 
strategies, more accurate prognosis, and many more. According to one view, evidence about 
mechanisms is an important ingredient in successful causal inference (Russo and Williamson 
2007). One reason to maintain this view is that causal conclusions can be regarded as always 
underdetermined by evidence about population- level associations because confounders can-
not conclusively be ruled out. As confounders cannot always reliably be measured, and it is 
always possible that there are unanticipated confounders, causal conclusions should not rest 
on evidence about correlations alone.

Prima facie, the view discussed in the last paragraph is opposed to experimentalism but can 
be supported by inferentialism. Experimentalists maintain that confounders are ruled out by 
the design of a randomized trial. Accordingly, evidence about mechanisms plays only a small 
role if any in the so- called hierarchies of evidence used in evidence- based medicine. Inferen-
tialists, by contrast, make causal judgments on the basis of evidence from a variety of sources, 
and evidence about mechanisms naturally fits into a diverse body of evidence. (For a discussion 
of the diverse roles that evidence about mechanisms can play in causal inference, see Clarke 
et al. 2014.)

Things are not quite so simple, however. On the one hand, it can be argued that knowl-
edge about mechanisms is necessary in the planning and design of a randomized trial as well 
as in the analysis and interpretation of data (La Caze 2011). Accordingly, even if the imme-
diate basis for a causal inference is an association generated by the experiment, the inference 
would not be reliable unless made against a backdrop of knowledge about mechanisms. On 
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the other hand, inferentialists need not require that this kind of knowledge be part of their 
diverse body of evidence. They can argue that while evidence about mechanisms can play 
a role in eliminating alternative hypotheses, there is no guarantee that it is a necessary 
ingredient (Reiss 2012).

Evidence about mechanisms is closely related to Hill’s criterion (6), “plausibility.” About 
it he says, “this is a feature I am convinced we cannot demand. What is biologically plausible 
depends upon the biological knowledge of the day” (Hill 1965). It is a simple fact about the 
history of medicine that our knowledge about biological pathways has increased dramatically 
since Hill wrote this. Examining the IARC Monographs on the Evaluation of Carcinogenic Risk 
over time, for instance, we find that in the 1970s there are practically no mechanistic consid-
erations (e.g., IARC 1974b), whereas in the more recent edition the volume of reported data 
on mechanisms is larger than either that of epidemiological data or of data on animal models 
(e.g., IARC 2012). Concomitantly, we find an increasing number of substances that have 
been reclassified mainly on the basis of evidence about mechanisms. At the same time, at least 
for now it seems false to say that evidence about mechanisms is necessary for reliable causal 
inference. Many substances have been classified as carcinogenic for decades, and the original 
judgments were made without the benefit of data on mechanisms. It is not frequently the case 
that such judgments are overturned once the mechanistic data is in.

3. Interpreting Causal Claims

Once a causal claim has been established, what has been learned? What do we mean when 
we say that some risk factor causes a medical outcome? Philosophers distinguish five broad 
families of theories of causation: regularity, probabilistic, counterfactual, interventionist, 
and mechanistic. These theories provide interpretations of causal claims because they define 
the term “cause” that occurs in them. All five theories play, or have played, important roles 
in medicine.

Under the regularity view, a factor causes an outcome if and only if it is a necessary con-
dition, a sufficient condition, both a necessary and sufficient condition, or an insufficient 
but non- redundant part of an unnecessary but sufficient (INUS) condition for the outcome. 
According to K. Codell Carter, early 19th- century medicine took a leap forward by adopting 
the regularity view in the guise of an “etiological viewpoint,” the belief that

diseases are best controlled and understood by means of causes, and in particular, 
by causes that are natural (that is, they depend on forces of nature as opposed to the 
willful transgression of moral or social norms), universal (that is, the same cause is 
common to every instance of a given disease), and necessary (that is, a disease does 
not occur in the absence of its cause).

(Carter 2003: 1; emphasis in original)

The causes of large numbers of bacterial, viral, and deficiency diseases can be understood this 
way. Koch’s postulates, which originate in the late 19th century, still embody the etiological 
viewpoint:

(i) The microorganism must be found in abundance in all organisms suffering from the dis-
ease, but should not be found in healthy organisms.

(ii) The microorganism must be isolated from a diseased organism and grown in pure culture.
(iii) The cultured microorganism should cause disease when introduced into a healthy 

 organism.
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(iv) The microorganism must be reisolated from the inoculated, diseased experimental host 
and identified as being identical to the original specific causative agent.

Postulate (iii) makes the presence of microorganism also sufficient for the disease. This basic 
understanding of the regularity view as a sufficient understanding of medical causation came 
under pressure as medical progress and an emerging interest in chronic (as opposed to infec-
tious) diseases around the beginning of the 20th century challenged the understanding of cause 
as a necessary and/or sufficient condition. Koch knew that postulate (iii) is too strong (when 
read as a sufficient condition), because he found asymptomatic carriers of cholera (Koch 1893). 
Moreover, most causes of chronic diseases such as cancers or cardiovascular diseases are neither 
necessary nor sufficient conditions. The IARC classifies vinyl chloride as a human carcinogen, 
but exposure to the compound does not always lead to angiosarcomas (or other cancers), nor 
are all angiosarcomas (much less all cancers) caused by it.

The contemporary version of the regularity view maintains that causes are INUS condi-
tions, which deals with some of the earlier problems. In contemporary epidemiology, for 
instance, causes are sometimes represented by the use of pie charts in which every wedge 
represents a condition that is necessary in the circumstances for disease; the entire pie rep-
resents the complex of conditions that are jointly sufficient (Rothman 1976). According to 
the INUS view, causes are neither necessary nor sufficient for their effects. Causes produce 
their outcomes only in conjunction with additional factors. Smoking, say, on its own is not 
followed by cancer. At minimum, a smoker has to be genetically susceptible and live long 
enough for the cancer to develop. Nor are most causal factors found in every instance of the 
disease as there are numerous alternative causes (each of which requires additional factors 
to produce the effect).

Both the original etiological viewpoint and the contemporary understanding of causes as 
INUS conditions are wedded to determinism: they assume that if all the conditions for an 
outcome are in place, the outcome will happen. Developments in the foundations of physics 
that occurred in the early 20th century led many researchers to abandon universal deter-
minism and influenced thinking about causality in the biomedical sciences. Causes were no 
longer understood as sufficient for their effects (singly or jointly with additional factors) but 
rather as affecting merely the chances of outcomes, and thus the regularity view is no longer 
adequate.

According to the probabilistic view of causality, a cause is a factor that raises the prob-
ability of its effect in a causally homogenous population. The latter qualification is needed to 
distinguish between direct and confounded causal relations. The latter are cases where both 
the apparent cause and effect are in fact independent effects of a common cause. For example, 
under Fisher’s constitutional hypothesis, smoking is not a cause of lung cancer but rather a 
byproduct of a common genetic factor. To distinguish between the two cases, we divide the 
population into two groups, one in which the genetic factor is present and one in which it 
is absent. If smoking raises the probability of lung cancer in both groups (assuming that the 
genetic factor is the only potential common cause), then it is a causal factor. A population is 
thus said to be causally homogenous whenever there is no variation among the causes of an 
outcome of interest in the population. If sex is a causally relevant factor, a causally homog-
enous population is one in which every member is a woman or one in which every member is 
a man; if age is a causally relevant factor, a causally homogenous population is one in which 
every member is in the same age group and so on.

It is important to note that the adequacy of the probabilistic view does not depend on 
whether factors such as Fisher’s genetic condition are known or measurable. The question 
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is whether a factor in fact raises the probability in a causally homogeneous population, not 
whether there are means to test this. A conceptual rather than practical or epistemic question 
is, however, whether to demand that a cause raise the probability in all causally homogenous 
populations, in some populations, or on average. Nancy Cartwright has defended a requirement 
of “contextual unanimity” according to which only those factors that raise the probability in 
all causally homogenous populations are causes (Cartwright 1979); Brian Skyrms has a slightly 
weaker requirement according to which the causal factors raise the probability of the effect 
in some populations but do not lower it in any (Skyrms 1980); and John Dupré has argued 
that factors that raise the probability of their effects on average should be called causes (Dupré 
1984). Contextual unanimity is a very strong requirement. If, say, there is a gene that makes 
some people immune to vinyl chloride, then the substance is not to be regarded as carcino-
genic even if it raises the probability of cancer for most people. This point, and a look to 
biomedical practice, led Dupré to abandon it for a focus on average probability increases. What 
randomized trials establish, according to Dupré, are average causal effects, not contextually 
unanimous causes.

On the other hand, a disadvantage of calling a factor that raises the probability of their 
effects only on average a cause is that the status of a factor as cause depends on the actual dis-
tribution of factors in a population. Suppose that although VC exposure increases the risk of 
developing angiosarcoma in most people, a cancer immunization gene lowered the probability 
that those people exposed to VC who have the gene will develop angiosarcomas below that of 
the general population. That is, for these people, exposure actually protects them against can-
cer. Dupré would call VC carcinogenic only as long as relatively few people in the population 
had that gene; if more people had it, the substance would cease to be a cause or even become 
a preventer of cancer, even for those people without the protective gene. If one believes that 
whether or not VC is carcinogenic has to do with its intrinsic properties and the intrinsic 
properties of the person exposed, then this is an unwelcome result. Dupré’s interpretation of 
causal claims is also prone to yield bad advice. A treatment that is effective on average may 
be harmful to some. If so, to learn that the treatment causes relief is misleading for those sub-
populations whose members are harmed by it.

A third view of causality starts from individuals rather than populations. It maintains essen-
tially that the treatment or risk factor is a cause of the medical outcome whenever the outcome 
would not have occurred if it had not been for the treatment or risk factor. For example, expo-
sure to VC is the cause of a worker’s angiosarcoma because he would not have developed the 
disease had he not been exposed to the substance. In philosophy, this counterfactual theory of 
causality, which originates in David Lewis’ (1973) paper, has received much attention. Lewis 
and his followers have never found an empirical measure to determine the truth value of such 
counterfactuals, however. This job has been left to biostatisticians, who have developed the 
so- called potential- outcomes framework of causality. In that framework, the most fundamental 
quantity is the individual causal effect (ICE), which is defined as:ICE: 

Yt(u) – Yc(u),

where Y measures the medical outcome of u (the patient), and t and c refer to treatment 
and control status, respectively. Thus, the individual causal effect measures the difference 
between the value the outcome variable would have assumed had the subject been treated 
and the value the variable would have assumed had the (same) subject not been treated. In 
theory, both values are counterfactual in nature. In practice, a patient can either be treated 
or not, but not both treated and not treated. Therefore, for any given subject u, we can 
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observe only either Yt(u) or Yc(u). Much of the literature on this framework develops strate-
gies for identifying the individual causal effect or related quantities from observable data 
(e.g., Imbens and Rubin 2015).

The fourth, interventionist, account of causation was characterized in the previous section, 
when we discussed Woodward. Despite its enormous influence in philosophy, it has not been 
applied much in the biomedical sciences except in the area of psychology (see, for instance, 
the papers in Part I of Gopnik and Schulz 2007).

The final view of causality I will discuss is the mechanistic account, according to which a 
risk factor causes a medical outcome if, and only if, it produces the outcome by a mechanism 
of the appropriate kind. Many definitions of a mechanism have been advanced; according to 
one (Machamer et al. 2000: 3): “mechanisms are entities and activities organized such that 
they are productive of regular changes from start or set- up conditions to finish or termination 
conditions.” “Being productive of changes” is itself a causal notion, which is why some com-
mentators have questioned the usefulness of this kind of account for understanding causality 
(e.g., Parascandola and Weed 2001). But arguably, understanding is provided by accounts of 
the specific entities of which mechanisms are composed and the activities in which they are 
engaged (Machamer 2004). At any rate, according to the mechanistic view, causal relations 
do not necessarily all share characteristics such as regular co- occurrence, probability raising, or 
counterfactual dependence, which is why proponents of the mechanistic view refuse to define 
causality in these terms.

Given this multiplicity of accounts of causation, a researcher who seeks guidance in interpret-
ing causal claims is spoilt for choice, so much is clear. What is dubious, to say the least, is whether 
this is a good state of affairs. After all, confusion and worse can arise when different researchers 
interpret causal claims differently, especially when these claims are used for further research, 
treatment decisions, and health policy making. For example, if a team of researchers establishes 
that VC is a cause of angiosarcomas in the probabilistic sense, but the claim is mistaken by a 
jury or judge to be a counterfactual causal claim, then a firm that exposed workers to VC, some 
of whom subsequently developed the disease, may be held responsible because the jury or judge 
thinks that without having been exposed to the substance, they would not have gotten ill. The 
counterfactual claim, however, does not follow from the probabilistic causal claim.

There are at least three strategies to deal with this plurality of causal interpretations. The 
first is to try to reduce one conception to another. If, say, it can be proved that everything that 
is true about causality under a probabilistic view is equally true under an interventionist view 
and vice versa, then we can safely ignore one of these views. Unfortunately, all attempts to do 
so have proved unsuccessful. (See, e.g., Hausman and Woodward 1999; Cartwright 2006.) The 
second strategy is to put one’s foot down and maintain that one’s favorite account exhausts the 
meaning of “cause.” The main problem with this strategy is that there are counterexamples to 
each account; that is, there are bona fide cases of causation that do not count as such under 
the given account and cases the account regards as causal that are not accepted as causal by 
common intuitions or scientific practice. Counterexamples to the regularity account were dis-
cussed above; similar cases can be found for each of the other accounts (for a detailed review, 
see Reiss 2015):

(Probabilistic) Not all causes raise the probability of their effects because a cause can be 
connected to its effect through more than one mechanism in such a way that positive 
and negative influences cancel on balance. Birth control pills are a cause of deep vein 
thrombosis (DVT) but also prevent pregnancy, itself a cause of DVT. On average, the two 
routes (positive contribution and prevention) might exactly cancel so that women on the 
pill have the same chance as those who are not to develop DVT.
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(Counterfactual) When two or more causes compete to bring about an effect, there may 
be causation without counterfactual dependence. A smoker who was also exposed to 
asbestos may develop lung cancer due to his smoking. However, had he not smoked, he 
might have developed the disease anyway, because of asbestos exposure.
(Interventionist) Not all causal relations are invariant to interventions. Interventions 
may sometimes chance the causal structure on the basis of which a higher- level relation-
ship holds. Antibiotics are effective in the treatment of bacterial infections. Used too 
often, populations can become resistant. In this case, the intervention destroys the causal 
relation that was aimed to be used to bring about an effect.
(Mechanistic) Some outcomes are caused by absences. Vitamin- D deficiency can cause 
multiple sclerosis. However, absences are not mechanistically connected to their effects. 
(This does not mean that mechanisms are not used in the explanation of the onset of a 
disease caused by an absence, but the absence cannot be the starting point of a causal 
process that terminates in the effect.)

The third strategy is to maintain that causality is not a feature of the external world but 
rather one of reasoning agents such as scientific researchers. Information about regularities, 
probabilistic dependencies, results of experiments, and the like provides reasons to believe 
causal relationships, but causal claims do not (or need not) represent anything specific in the 
world. According to one such “subjective” theory of causality, epistemic causality, “[c]ausal 
relationships are to be identified with the causal beliefs of an omniscient rational agent” 
(Russo and Williamson 2007: 168). Thus, causality depends on what an agent believes in 
the ideal case in which he/she is in the possession of all relevant evidence (though it is 
acknowledged that real agents are rarely in that situation). Another subjective theory, the 
inferentialist theory (which is closely related to inferentialism about evidence that was dis-
cussed above):

maintains that the meaning of causal claims is given by their inferential connections 
with other claims. In particular, causal claims are inferentially related to evidential 
claims—the claims from which a causal claim can be inferred—as well as to claims 
about future events, explanatory claims, claims attributing responsibility, and coun-
terfactual claims (claims predicting “what would happen if”)—the claims that can be 
inferred from a causal claim.

(Reiss 2015a: 20; emphasis in original)

Subjective theories do not suffer from the drawbacks of the other two strategies. They neither 
try to reduce one feature of causal relationships to another, nor do they suffer from obvi-
ous counterexamples (see, for instance, Reiss 2015a, Chapter 5, about how the inferentialist 
theory deals with cases of redundant causation which pose problems for many standard theo-
ries). They also address the original challenge adequately. The epistemic theory holds that 
causal claims have, in principle, one unique meaning, namely, what an omniscient rational 
agent believes to be true. The inferentialist theory can be understood as giving up looking for 
a definition of cause, instead allowing that there may be multiple notions, and asking about 
what kind of practices provide evidence for causal claims, what inferences from this evidence 
are justified, and what purposes knowledge of causal claims in medicine serves. It is a pragmatic 
theory that starts with a medical or policy problem, asks what kinds of causal knowledge are 
relevant for addressing the problem and what kinds of evidence are needed to substantiate 
this knowledge without assuming that meaning necessarily carries over from one context to 
the next.
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4. On the Usefulness of Causality in Medicine

In the introductory section, I suggested that biomedical researchers seek knowledge of causal 
claims because it is useful in attaining the discipline’s more ultimate purposes such as explana-
tion, prediction, and making successful treatment and health policy decisions. We may ask, 
however, whether knowledge of causal claims really does promote these more ultimate pur-
poses. In particular, we may ask whether knowledge of causal claims is necessary or sufficient 
(or both) for explanation, prediction, and decision making.

It turns out that the answer is ambiguous because it depends on context and on the kind 
of causal claim that is being used in that context. It is certainly true that causal claims can 
help explain outcomes, but their ability to do so depends on the precise nature of the explana-
tory interest and the causal claim at hand. “Vinyl chloride causes cancer of the liver” may be 
cited to explain a particular clustering of incidences (along with information about exposure), 
but it hardly explains why this worker rather than that one developed the disease, or why 
many workers who were exposed do not develop it or some non- exposed people do. Without 
information about the biological pathways through which they produce neoplasms, causal 
explanations are very thin at best.

The relation between causality and prediction is even more tenuous. When relation-
ships are stable, we can successfully predict on the basis of correlations—knowledge of the 
true causal structure is not necessary. On the other hand, when relations are not stable (for 
instance, because the composition of causal mechanisms changes, some mechanisms operate 
indeterministically, or interferences occur), knowledge of causal relations does not help much 
to improve predictability. If, say, exposure to VC produces a stable number of liver cancers 
in a population and gives all exposed workers a specific set of symptoms, such as peripheral 
neuropathy and pain in the fingers, we can use information about the symptoms (a correlate) 
to make a prediction about the chances of developing liver cancer. If, on the other hand, the 
relationships are not stable, making a prediction on the basis of observing the real cause is 
prone to be unreliable. It is certainly possible that the relationship between some indicator, 
which is not directly causally connected to an outcome, and the outcome is more stable than 
the relationship between a cause and its effect. The point is that for prediction, stability is 
important, not causality.

Lastly, both of these problems occur in the case of decision making. For good decisions, we 
first need the right kind of causal knowledge. If some treatment does not operate in a “con-
textually unanimous” fashion (see previous section), then knowing that it is effective at the 
population level will not be a good basis for an individual treatment recommendation, even if 
that individual is a member of that population. Similarly, as Alex Broadbent has pointed out, 
that C (e.g., some risk factor) causes E (e.g., an adverse medical outcome) does not mean that 
reducing C will reduce E (Broadbent 2013). A ban on sugary drinks will not necessarily lead 
to lower obesity or diabetes rates because it depends on what people do instead. If, as does not 
seem implausible, people substitute an equally or more risky behavior, rates may stay put or 
increase even though the policy was based on a genuine causal relationship. Once again, in 
the policy context we want stable relationships between a policy variable and an outcome, and 
what causal relationships, if any, these are based on is immaterial.

Broadbent argues that epidemiologists are primarily interested in explanation and pre-
diction, not in causation (Broadbent 2013). He bemoans that philosophers of science have 
basically ignored prediction as a topic of methodological analysis. The above- mentioned con-
siderations support this view.

This is not to argue, of course, that knowledge of causal claims is not useful. An impor-
tant take- home lesson, however, is that biomedical researchers are seldom interested in causal 
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claims in their own right but rather because, and to the extent to which, they help to attain 
more ultimate purposes. Whether they do so or not is a contextual matter that has to do with 
the precise nature of the purpose pursued as well as the causal claim in question.
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