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What are the drivers of induction? Towards a Material Theoryþ

Julian Reiss 
Institute for Philosophy and Scientific Method, Johannes Kepler University Linz, Altenberger Str. 69, 4040, Linz, Austria  

A B S T R A C T   

John Norton’s Material Theory of Induction (Norton, 2003, 2005, 2008, forthcoming) has a two-fold, negative and positive, goal. The negative goal is to establish 
that formal logics of induction fail if they are understood as universally applicable schemas of induction. The positive goal is to establish that it is material facts that 
enable and justify inductive inferences. I argue in this paper that Norton is more successful with his negative than with his positive ambition. While I do not deny that 
facts constitute an important type of enabler and justifier of inductions, they are by no means the only type. This paper suggests that there are no less than six other 
types of background information scientists need and use to fuel and warrant inductions. The discussion of additional enablers and justifiers of inductions will further 
show there are practically important and intellectually challenging methodological issues Norton’s theory prevents us from seeing because it leaves out this or that 
type of enabler and justifier.   

1. Introduction 

John Norton’s Material Theory of Induction (Norton, 2003, 2005, 
2008, forthcoming) has a two-fold, negative and positive, goal. The 
negative goal is to establish that formal logics of induction fail if they are 
understood as universally applicable schemas of induction. The positive 
goal is to establish that it is material facts that enable and justify 
inductive inferences. I argue in this paper that Norton is more successful 
with his negative than with his positive ambition. While I do not deny, 
and don’t know anyone who does, that facts constitute an important 
type of enabler and justifier of inductions, they are by no means the only 
type. Below I will suggest that there are no less than six other types of 
background information scientists need and use to fuel and warrant 
inductions. The discussion of additional enablers and justifiers of in-
ductions will show there are practically important and intellectually 
challenging methodological issues Norton’s theory prevents us from 
seeing because it leaves out this or that type of enabler and justifier. 

Norton provides three arguments in favour of the material theory of 
induction (Norton, forthcoming: Ch. 2, 1–2; emphasis original): 

(i) Failure of universal schema: [… ] no attempt to produce a uni-
versally applicable formal theory of induction has succeeded.  

(ii) Accommodation of standard inferences: […] the successes of many 
exemplars of good inductive inferences can be explained by the 
material theory of induction.  

(iii) Inductive inference is powered by facts: The ampliative character of 
inductive inference precludes universal schemas. 

None of these arguments establishes the material theory on its own, 
and even jointly. They are at best suggestive. That no formal theory of 
induction has succeeded so far does not mean that no formal theory ever 
will succeed. More importantly, taking the failure of past formal theories 
as evidence that no ‘universally applicable formal theory’ will succeed 
does not unequivocally speak in favour of Norton’s material theory. It 
only speaks in favour of some theory that is not universally applicable 
and formal. That the material theory is able to explain the successes of 
many instances of good inductive inferences, again, provides evidence of 
its truth but leaves open the possibility that alternative theories explain 
instances of inductive success equally well or better. That inductive 
inference is ‘powered by facts’ allows the possibility of it not being 
powered by facts alone. 

It is therefore possible to be largely in agreement with Norton’s ar-
guments and yet hold a different theory. The paper proceeds as follows. 
To pave the ground, I will describe the negative aspect of Norton’s 
theory, largely approvingly, in the next section. In Section 3 will discuss 
his positive case for material facts as drivers of inductions. Section 4 will 
introduce a number of material elements Norton has left out in the 
Material Theory. Section 5 will add a number of normative enablers and 
justifiers of induction. Section 5 concludes. 

Norton remains ambiguous between a normative and a descriptive 
reading of his theory. He certainly wants his theory to be descriptively 
accurate and maintains that in scientific practice, material facts play the 
role of enabling inductive inferences. But at times, he seems to be 
claiming more, viz. that material facts in fact warrant or justify in-
ductions, quite independently of whether or not scientists are aware of 
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this. I want to remain neutral on this issue and will, in what follows, refer 
to material facts as the drivers of inductions. Using this term, I hope to 
convey a dual descriptive and normative meaning: that which does in 
fact enable inductive inferences and that which justifies or warrants it. 

2. Formal theories of induction are unsuccessful 

Induction is a type of inference, the act of passing from one set of 
propositions, statements, or judgements taken to be true — the pre-
misses — to another — the conclusion — the truth of which is believed 
to follow in one way or another from the truth of the premisses. Para-
digm cases of good inferences are deductive inferences, which are such 
that the truth of the premisses guarantees the truth of the conclusion. 
Some basic examples of deductive inferences include:  

A. Modus Ponens 

If it rains, then it pours. 

It rains. 

Therefore, it pours.   

B Disjunctive Syllogism 

Either the gardener was the murderer, or the stable boy. 

The stable boy wasn’t the murderer. 

Therefore, the gardener was the murderer.   

C Dilemma 

If Antigone follows King Creon’s order not to bury her brother, she’ll 
betray her love for him and most deeply held values. 

If Antigone does secure a respectable burial for her brother, she’ll be 
stoned to death. 

Therefore, Antigone will either betray the love for her brother and 
most deeply held values or be stoned to death. 

Though I have used specific statements concerning concrete exam-
ples in each case, what makes deductive inferences special is that their 
validity derives fully from the logical form of the statement and is 
therefore independent of the statements’ content. Modus Ponens, for 
instance, has the general form: 

If A, then B. 

A 

Therefore, B. 

and the inference is valid no matter what we substitute for A and B, 
including obvious nonsense. Thus, 

If pigs can fly, wallabies are larger than kangaroos. 

Pigs can fly. 

Therefore, wallabies are larger than kangaroos. 

is a valid inference (even though, of course, from false premisses to a 
false conclusion in this case). 

When Norton denies that all formal schemas of induction fail, he is in 
fact saying that induction does not work this way. In case of inductive 
inferences, the reliability of an inference is not invariant to substitutions 
of alternative premisses of the same form.1 Let us take the simplest case 
of enumerative induction or inductive generalisation. That has the form: 

Some As are B. 

Therefore, all As are B. 

This inference is reliable, for instance, if we substitute ‘electron’ for 
‘A’ and ‘has a mass of 9.10938356 " 10–31 kg’ for ‘are B’, but not if we 
substitute ‘gold coin’ and ‘has a mass of one ounce’. Sometimes weak-
ening the conclusion helps to make an inference more reliable. Thus, 
‘Some ravens are black, therefore all ravens are black’ is subject to ex-
ceptions due to the (rare) existence of albino ravens. Thus, weakening 
the conclusion to ‘Almost all ravens are black’ improves the inference. 
This won’t work, however, when the As are cats rather than ravens. 

The same point — that inductive inferences are not reliable merely in 
virtue of their form — can be made with respect to all theories or models 
of induction. An additional problem for simple enumerative induction is 
that it is very narrow in its applications. Plainly, many inductions are not 
inferences from ‘some’ to ‘all’ but rather inferences from effects to 
causes (e.g., when a disease is inferred from symptoms or a perpetrator 
from fingerprints and other clues) or from a collections of facts to a 
unifying hypothesis (e.g., when a hypothesis about dietary trends is 
inferred from facts about people’s weights and other aspects of their 
health). Norton calls these cases of ‘hypothetical induction’ (e.g., Nor-
ton, 2003, 2005). 

The hypothetico-deductive account (e.g., Hempel, 1966), for 
example, models inductive inferences as follows: 

Hypothesis H deductively entails evidence E. 

E. 

Therefore, H. 

Formally, this is an instance of an inference called the ‘fallacy of 
affirming the consequent’. The reason the inference is a fallacy in 
deductive logic is that the fact that H deductively entails E does not 
preclude the existence of one or more alternative hypotheses H0, H00 etc. 
that equally entail the evidence E. Thus, many diseases produce similar 
symptoms, the same set of clues may have been left by many different 
suspects, many dietary behaviours may be responsible for the same 
patterns in health outcomes. To be reliable, hypothetico-deductivism 
must therefore be supplemented by mechanisms for selecting among 
the competing hypotheses. 

Proponents of inference to the best explanation (IBE) maintain, un-
surprisingly, that the hypothesis which best explains the evidence, is to 
be selected. One immediate problem for applying the model is that there 
are many ways to interpret ‘explains’ and ‘best’. To make things simple, 
let us assume that ‘explains’ means ‘causally explains’ (and that we 
know what it means to explain causally)2 and that explanations in terms 
of causes that are more frequent or more likely to obtain are better than 

1 In logic, ‘validity’ is a technical term which refers to the truth-preserving 
property of an inference. Since inductive inferences are not truth preserving, 
it might confuse some readers to refer to an inductive inference as ‘valid’, 
‘Reliable’ is, however, not ideal either as it carries the connotation ‘with high 
probability’. I do not mean to imply that a good inductive inference must confer 
a high probability on its conclusion. But there are no good alternative terms.  

2 These are strong assumptions indeed. There is no agreement on scientific 
explanation among philosophers (or scientists), nor on causation, nor on what it 
means for a theory or hypothesis to explain the facts better than an alternative. I 
merely want to illustrate a point here. 
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those that refer to rare or unusual causes. 
Understood this way, IBE certainly works well for many cases. Even 

though both H ¼ ‘The patient has bronchitis’ and H’ ¼ ‘The patient has 
lung cancer’ would causally explain a patient’s episode of coughing, 
inferring H would be reasonable unless there are other symptoms that 
cannot be explained by H. But it doesn’t work for other cases. Both 
Newton’s gravitational theory and quantum mechanics violate as-
sumptions about the behaviour of causes prevalent at the time when 
they have come to be widely accepted (Day & Kincaid, 1994). Newton’s 
theory posits action-at-a-distance (in violation of the assumption that 
causes must be contiguous with their effects). Quantum mechanics is a 
genuinely stochastic theory (in violation of the assumption that causes 
are sufficient for their effects), at least under some interpretations.3 

These cases show that theories that explain causally less well than al-
ternatives were selected over these alternatives for reasons not directly 
related to explanation (see Norton, forthcoming: Chs 8–9 for a more 
detailed discussion of IBE). 

A third family of accounts of induction Norton distinguishes is the 
family of probabilistic accounts. In Bayesian confirmation theory (e.g., 
Howson & Urbach, 2006), degrees of belief are represented by proba-
bilities, and the dynamics of belief change are governed by Bayes’ 
Theorem. Scientific hypotheses H are assigned probabilities P(H) ¼ p. 
An observational statement E is evidence in favour of H if and only if the 
posterior probability of H conditional on E is higher than the prior, 
unconditional probability: P(H |E) > p. Bayes’ Theorem states how to 
calculate the posterior probability:  

P(H |E) ¼ P(E |H)P(H)/P(E).                                                                   

As Bayes’ Theorem is indeed a theorem in probability theory, 
Bayesian inference is in fact deductive, and the force of a Bayesian 
argument stems entirely from the assignment of probabilities. This limits 
the applicability of Bayesian confirmation theory dramatically. 

Decision theorists distinguish among situations of certainty, of risk, 
and of uncertainty (e.g., Resnik, 1987). Decisions under certainty are 
covered by deductive logic. Decisions under risk and uncertainty, which 
require inductive reasoning, are characterised by the existence of a 
well-defined outcome space and a probability measure over that space in 
the former, and the absence of such in the latter case. The statistician 
Leonard Savage has referred to these types of situations as ‘small worlds’ 
and ‘large worlds’, respectively (Savage, 1972). 

In small worlds, when outcome spaces and probabilities are known, 
Bayesian confirmation theory works very well. Suppose a patient fears 
he might suffer from some disease and gets tested. H is the hypothesis 
that the patient has the disease, E the positive test result. The test has a 
known sensitivity, P(E |H), of 95%, and a known specificity, P(:E | :H), 
of 99%. The patient can be regarded as a randomly drawn individual 
from a population of patients in which 15% suffer from the disease. 
Using the expansion P(E) ¼ P(E |H)P(H) þ P(E | :H)P(:H), we can 
rewrite Bayes’ Theorem as:  

P(H |E) ¼ P(E |H)P(H)/[P(E |H)P(H) þ P(E | :H)P(:H)], and, filling in the 
numbers, calculate: 95%*15%/[95%*15% þ 1%*85%] ¼ 94.4%                     

The question now is to what extent scientific inference can be 
modelled on medical testing or the analysis of games of chance. 
Bayesians’ scientific reasoning happens in large worlds but assumes that 
they can be analysed, using simplifications and idealisations, as if they 
were small worlds. Norton and I are among the critics who argue that the 
assignment of probabilities can be highly misleading (and result in poor 
inferences) unless it is grounded in well-supported assumptions about 
the stochastic process responsible for the outcomes, as it is in games of 

chance and medical testing (e.g., Norton, 2011; Reiss, 2011, 2014). 
Suppose a new bird has been discovered on some island and it 

happens to be black. How should we assign the prior probability to the 
hypothesis that all birds of this kind are black in the absence of any 
information about the bird’s genus membership and ontogeny? Even 
using a principle of indifference (Keynes, 1957 [1921]) that assigns 
equal probabilities to each possible outcome is inapplicable because 
absent other information, the outcome space is not clear. 50% (because 
there are two possible outcomes: black and non-black) is just as 
reasonable as 16.67% (because in opponent process theory there are six 
main colours) or any smaller number (as the light spectrum is contin-
uous). Next we need to determine the likelihoods. Presumably, if all 
members of this bird species are black, then we’d expect the one in front 
of us to be black and thus P(E |H) ¼ 1. But what should we assume in any 
of the other cases for P(E | :H)? We’d need, not only information about 
how many possibilities there are, but also about how the individuals are 
distributed among the possibilities. 

There are theorems showing that different assignments of numbers to 
priors eventually converge, but they do not solve the problem (cf. 
Norton, forthcoming: Ch. 1). First, they are true only under unrealistic 
assumptions including the assumption that the incoming pieces of evi-
dence are independent, conditional on the falsity of the hypothesis. But 
of course, if evidence is collected repeatedly, it is collected under similar 
circumstances that are not independent from each other. Second, the 
priors wash out only in the long run but scientists tend not simply to 
repeat experiments or observations just so probabilities converge. 

3. Material facts are drivers of induction 

If formal approaches to inductive inference fail, it is a good idea to 
consider a material alternative. The terminology Norton uses is remi-
niscent of Rudolf Carnap’s distinction between the formal and the ma-
terial modes of speech, the former concerning the use of language, the 
latter, objects (or other entities) and their relations (Carnap, 1937). But 
the formal/material mode distinction neither captures the difference 
Norton is after, nor does it make sense to say that objects play a role in 
inferences. 

The formal/material distinction can also be found in the work of 
Wilfrid Sellars (Sellars, 1953) and, inspired by Sellars, in Robert Bran-
dom’s work (Brandom, 1994, 2000). Sellars and Brandom distinguish 
formal and material rules of inference. Formal rules of inference have 
been introduced above. Modus ponens et al. are valid in virtue of their 
form. Their validity is invariant to substitutions of the particular sen-
tences that appear in the inference. Material inferences, by contrast, are 
reliable in virtue of the meaning of the concepts that appear in the 
inference. For example, we can infer ‘The streets are wet’ directly from 
‘It is raining’ without having to assume that the argument is an enthy-
meme, leaving out a premiss such as ‘Whenever it is raining, the streets 
are wet’, due to the content of the concepts involved. 

Norton, however, explicitly rejects this approach, writing (Norton, 
forthcoming: Ch. 2, 29): 

When I developed the material theory of induction, I was not aware 
of Sellars’ and Brandom’s notion of material inference and, in 
particular, Brandom’s use of the term “material inference.” […] 

The difficulty is that our notions of material inference differ slightly, 
as far as I can see. That means that it would have been better at the 
outset if I had chosen another name. For Brandom, the above infer-
ence is material since it is made good by the concepts invoked in the 
premises. In my view, it is material since I locate the warrant for the 
inference in the background material fact… 

In this passage, Norton states that it is a ‘background material fact’ 
that warrants an induction. Norton’s book and the papers on the Ma-
terial Theory are littered with examples. Here is one. What justifies the 
inference of the crystal form from a few samples of barium salt to all 

3 A proponent of IBE might counter that neither contiguity nor sufficiency for 
the effect is a necessary component of the concept of cause. I will discuss the 
influence of conceptual considerations on induction below. 
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samples? The material fact that, generally, each crystalline substance 
has a single characteristic crystallographic form (Norton, forthcoming, 
44). Norton does not say much about the notion of fact he employs 
except that they are highly domain or context specific. A highly general 
‘fact’ such as ‘nature is uniform’ would do the same work but nature is 
uniform at best within very narrow domains or highly specified contexts 
(see Brandom, 1994, 2000: Ch. 2 in particular). That salts tend to be 
uniform with respect to crystalline form does not justify beliefs about 
other physical properties of substances, say. 

Unfortunately, Norton is not consistent in his description of the 
source of warrant. The original article that introduced the Material 
Theory (Norton, 2003) speaks of ‘material postulates’ that ‘license’ or 
‘underwrite’ inferences. But postulates and facts are two very different 
kind of thing. A postulate is an essential premiss in an argument. A 
postulate, thus, is a presupposition for an argument to go through but it 
may well be false. Social scientists standardly use the postulate of ra-
tionality in their analyses of social events but are aware of its idealising 
character. 

Facts, by contrast, are ‘that which is the case’. They are the truth- 
bearers of propositions or the obtaining of states of affairs.4 Facts are 
usually contrasted, not equated, with hypotheses.5 A ‘false fact’ is either 
an oxymoron or a category mistake. Social scientists do not use ‘the fact 
of rationality’ in their analyses of social events.6 

Since the 2003 article defines: ‘I shall call these licensing facts the 
material postulate of the induction’ (Norton, 2003, p. 650), some 
prominent counterexamples in the book notwithstanding, I will go with 
the facts reading and assume that the Material Theory maintains that 
facts rather than material postulates or substantive background as-
sumptions are the drivers of inductive inferences. 

The observation that all induction is local is the opposite side of the 
rejection of formal and universal theories of induction.7 In their analysis 
of IBE, Day and Kincaid wrote (Day & Kincaid, 1994, p. 282): 

IBE names an abstract pattern whose force and success depends on 
the specific background assumptions involved. Without substantive 
assumptions both about explanation in general and about specific 

empirical details, IBE is empty. In short, appeals to the best expla-
nation are really implicit appeals to substantive empirical assump-
tions, not to some privileged form of inference. It is the substantive 
assumptions that do the real work. 

The same can be said about inductive generalisation and Bayesian 
confirmation theory. We are happy to measure the mass of an electron 
only once or a few times (in case there are reasons to doubt the accuracy 
or precision of the measurement procedure) because we know, and we 
accept the Standard Model of particle physics as a background material 
fact, that elementary particles are homogenous in their intrinsic prop-
erties. We have no such fact to license the analogous inference in case of 
the gold coins. But this is entirely contingent on how the world is. If, for 
instance, there was a world-wide government monopoly on the minting 
of gold coins, the monopoly was strictly enforced and the government 
produced only sovereigns with a very reliable process, we could equally 
determine the mass of one or a small number of coins and infer imme-
diately to all. 

The point has already been made in the context of Bayesian confir-
mation theory. That theory works if and when the right kinds of facts 
about the stochastic process responsible for observable results are 
known. Thus, again, it is material facts, relevant to the case at hand, that 
drive inductive inferences. 

4. Material drivers Norton left out 

Thus, I agree with Norton in his rejection of formal theories of 
inductive inference. However, what Norton puts in its place is wanting 
in several respects. While I agree that material facts are essential to 
inductive inferences, by assuming that ampliative inference is exclusively 
‘powered by facts’ Norton’s theory draws attention away from philo-
sophical issues concerning inductive inference that are both practically 
important and intellectually challenging. These issues are: the role of 
theory in inductive inference, idealisation and adequacy-for-purpose, 
and the normative nature of inductive inference. 

4.1. The role of theory in inductive inference 

That it is facts that drive inductions makes the Material Theory un-
tenable as a descriptive theory of induction. This is because scientists 
frequently have to rely on theory or ‘postulates’, the truth of which is at 
least disputed if not openly denied in their inferential practices. Norton’s 
book itself is a source of examples. In Chapter 1, for instance, Ren!e-Just 
Haüy’s crystallographic theory, which is false as it assumes each crys-
talline substance to have a single characteristic crystallographic form, 
plays such a role. Norton notes (Ch. 1: 19): 

This is the crudest version of how chemists pass from a single sample 
to all. What is notable is that it is no inductive inference at all. The 
inference is deductive and authorized by early crystallographic 
theory. 

Of course this is an extreme case and a purely deductive passage was 
possible only during a brief window of a few decades of the early 
years of Haüy’s crystallographic theory. The theory soon encoun-
tered anomalies. 

Here, then, we have a theory rather than a fact that powered an 
inference.8 While this is very often the case, everywhere in science, it 

4 There are many alternative philosophical theories of facts (Mulligan & 
Correia, 2017). What I say about facts here is, I hope, neutral between these 
theories.  

5 Facts are contrasted with theories or hypotheses on the one hand and values 
on the other. This section focuses on the former contrast. I will address the 
influence of values on inference below. 

6 There is a possible reading according to which Norton’s notion of a ‘ma-
terial fact’ comprises not just things ordinarily referred to as facts but also 
statements about the world or hypotheses that are not known to be true. There 
is some textual evidence that Norton allows ‘assumptions’ (e.g., Norton, 
forthcoming: 95, 153, 167, 173), ‘principles’ (e.g., 78) and ‘theories’ (e.g., 102) 
to warrant inductive inferences. If so, I should modify my main conclusion, viz., 
that Norton leaves out important kinds of drivers of induction and argue instead 
that he glances over important differences among the drivers of induction he 
does admit. Let me say two things in response. First, this would still leave a 
number of important drivers out, notably idealisations, i.e., statements about 
the world that are known to be false, which he ignores, and (ethical) norms, 
which he explicitly rejects as drivers of inductions (in Ch. 5 of Norton, forth-
coming). Second, even if Norton appears to equivocate between facts, as-
sumptions, principles and so on, all the examples he uses to illustrate his theory 
are true, approximately true or held to be true at the time. In my reading, his 
choice of the word ‘fact’ (alternatively, ‘truth’, pp. 48/67, and ‘knowledge’, p. 
10) is conscious and not misleading.  

7 This view is in no way novel or specific to Norton’s theory. In a symposium 
on scientific inference, Ron Giere commented on the formal nature of the 
Bayesian approach (Giere, 1997: S183):[S]trictly speaking, there is no logic 
underlying scientific inference. There are only methods with various desirable 
operating characteristics. These operating characteristics, being sensitive to the 
experimental context, lack the universality of logical principles. But that is just 
what makes them well-suited to the job of acquiring reliable experimental 
knowledge. 

8 Norton might of course maintain that Haüy’s theory was in fact used, but 
that crystallographers were not justified in using it for inductive inferences, i.e., 
that the inferences were not warranted. However, he makes no suggestion to 
the effect that crystallographers at the time merely felt, but weren’t in fact, 
justified in making the inference, or perhaps that anyone who shares their 
background beliefs would be justified in making the inference relative to that 
constellation of beliefs. 
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comes particularly to the fore at the boundaries of sciences, when novel 
phenomena are encountered and investigated — as in early 
crystallography. 

Economics has witnessed a debate about the role of theory in infer-
ence that is almost as old as the discipline itself. This is the debate be-
tween groups of economists I have called ‘Ricardians’, who maintain 
that inference should always proceed against the backdrop of a theo-
retical model that is needed to select, order, and interpret evidence, and 
their opponents, whom I have called ‘Baconians’, who reject theory as 
unreliable and therefore urge generalisation from the facts very gradu-
ally and without the benefit of theory (Reiss unpublished). The first 
instalment of this debate was between the actual Ricardians (a group of 
classical economists) and the Cambridge Inductivists (a group around 
William Whewell); the current instalment is between economists 
following a structural or Cowles Commission approach and those 
following a design-based approach. 

In the 1940s the debate circled around the role of theory in business 
cycle research. In a famous review of Arthur Burns’ and Wesley Clair 
Mitchell’s Measuring Business Cycles (Burns & Mitchell, 1946), 
Dutch-American economist Tjalling Koopmans distinguished between a 
‘Kepler stage’ and a ‘Newton stage’ of inquiry, the former aiming to 
discover ‘empirical regularities’, the latter at ‘fundamental laws’. The 
laws of the Newton stage are more fundamental because they are at once 
more elementary and more general (Koopmans, 1947, p. 161). While 
Koopmans acknowledged Burns and Mitchell’s contribution to the 
Kepler stage of inquiry in the field of economics, he maintained Koop-
mans, 1947: 162; emphasis original: 

that in research in economic dynamics the Kepler stage and the 
Newton stage of inquiry need to be more intimately combined and to 
be pursued simultaneously. Fuller utilization of the concepts and 
hypotheses of economic theory (in a sense described below) as a part 
of the processes of observation and measurement promises to be a 
shorter road, perhaps even the only possible road, to the under-
standing of cyclical fluctuations. 

To support his judgement, Koopmans provided three arguments: 

My first argument, then, is that even for the purpose of systematic 
and large scale observation of such a manysided phenomenon, 
theoretical preconceptions about its nature cannot be dispensed 
with, and the authors do so only to the detriment of the analysis. 
(Koopmans, 1947: 163; emphasis original) 

This, then, is my second argument against the empiricist position: 
Without resort to theory, in the sense indicated, conclusions relevant 
to the guidance of economic policies cannot be drawn. (Koopmans, 
1947: 167; emphasis original) 

[A]ny rigorous testing of hypotheses according to modern methods 
of statistical inference requires a specification of the form of the joint 
probability distribution of the variables. […T]he the extraction of 
[useful] information from the data requires that, in addition to the 
hypotheses subject to test, certain basic economic hypotheses are 
formulated as distributional assumptions, which often are not 
themselves subject to statistical testing from the same data. Of 
course, the validity of information so obtained is logically condi-
tional upon the validity of the statistically unverifiable aspects of 
these basic hypotheses. The greater wealth, definiteness, rigor, and 
relevance to specific questions of such conditional information, as 
compared with any information extractable without hypotheses of 
the kind indicated, provides the third argument against the purely 
empirical approach. (Koopmans, 1947: 170; emphasis original). 

I will talk about statistical inference in detail below. 
The reason to revisit this debate here is that researchers in domains 

that aren’t already settled, especially when its phenomena are complex 
and the capacity for experimentation is limited, face exactly the 

dilemma that characterised the Burns/Mitchell-Koopmans exchange. 
Without theory, data cannot be selected, ordered, interpreted or indeed 
used for inductive inferences. But since there is no widely accepted 
theory, it is regarded by critics as unfit for the job. Use theory? Damned 
if you do, damned if you don’t. 

This is not the place for a resolution of the dilemma faced by re-
searchers at the frontiers of science (for an attempt, see Reiss unpub-
lished). Let me make just two remarks. First, the dilemma is a genuine 
one that is not resolved trivially. In many sciences data are exceedingly 
easy to come by but exceedingly hard to use as a basis for effective in-
ferences. Theory would solve many inferential problems but there is no 
theory that is universally or even widely accepted. Second, Norton sides, 
without argument, with the radical inductivists or ‘Baconians’ in the 
debate, those who wanted to learn gradually from experience alone. The 
problem is that, at least in economics, the purely inductivist approach 
has never been executed with much success. Now, this may well be due 
to accidents of history.9 But the history of science indicates that other 
disciplines too have profited from background assumptions or ‘postu-
lates’ that go well beyond the known facts and have thus helped to 
turbocharge inductions that would not have advanced much in their 
absence. The interesting question for a methodologist who wants to 
contribute to a resolution of debates among practitioners such as the 
above is the question to what extent, and in what manner, a background 
postulate can violate the facts without losing its ability to power in-
ferences effectively. By limiting the drivers of induction to facts, Norton 
loses the ability to address this issue. 

Thus: (1) theories are additional drivers of induction. 

4.2. Idealisations and adequacy-for-purpose 

A related but by no means identical issue is the widespread use of 
idealisations in scientific inferences. Theories are bodies of substantive 
hypotheses used to systematise and unify a range of diverse phenomena. 
Idealisations are more specific hypotheses that conflict with known facts 
(or are presumed or suspected to do so) but that are useful nevertheless. 
Theories may well contain idealisations, but the two are not the same. 

We have already encountered an example of an idealisation above: 
the routine use of the assumption of rationality in social research. There 
is no doubt that in many contexts, social scientists are justified in using 
the assumption. Milton Friedman, for instance, argued that if business-
men did not behave as if they maximised profits, they’d be driven out of 
business (Friedman, 1953). The assumption can thus be used to model 
the behaviour of business leaders unless specific good reasons to think 
otherwise can be given (e.g., because short-run behaviour is being 
analysed, incentive structures aren’t appropriate, there is significant 
market failure etc.). 

What is clear is that there is no fact of rationality that could be used 
to warrant inferences. Of course, it is not just social scientists who 
idealise. Norton, for instance, discusses the cosmological principle, ac-
cording to which the spatial distribution of matter in the universe is 
homogeneous and isotropic when viewed on a large enough scale, as 
providing warrant for inferences. The cosmological principle is probably 
an idealisation but most certainly an assumption rather than a known 
fact. 

The use of idealising assumptions in inference comes into sharp relief 
in statistical inference. Statistical inferences always proceed against a 
probability model (e.g., Hoover, 2003). Probability models are repre-
sentations of the data-generating process from which the analysed data 
set was sampled and contain assumptions about the functional form of 
the relationships among the sampled variables, the distribution of the 
error term (which measures the net influence of omitted variables) as 
well as the sampling mechanism. Frequently made assumptions include 
random sampling, linearity, normality and that errors are independent 

9 As I have argued in Reiss, 2008. 
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and identically distributed (IID). 
Many such assumptions are plainly false. Many samples are conve-

nience rather than random samples, for instance. To build a model that 
‘works’, i.e., that is simple enough so that existing statistical tools can be 
brought to bear on the problem at hand and yet realistic enough so that 
inferences are not too far off the mark is an art. This is in part due to the 
fact that a relatively small difference between probability model and 
data-generating process can lead to a significantly different inference. 
Consider the following example due to David Freedman (Freedman, 
2009, p. 28): 

Suppose, for example, that in a certain jurisdiction there are 1084 
probationers under federal supervision: 369 are black. Over a six- 
month period, 119 probationers are cited for technical violations: 
54 are black. This is disparate impact, as one sees by computing the 
percents: In the total pool of probationers, 34% are black; however, 
among those cited, 45% are black. 

A t-test for “statistical significance” would probably follow. The 
standard error on the 45% is √.45 " .55/119 ¼ .046, or 4.6%. So, t ¼
(.45 $ .34)/.046 ¼ 2.41, and the one-sided P is .01. (A more so-
phisticated analyst might use the hypergeometric distribution, but 
that would not change the outlines of the problem.) The null hy-
pothesis is rejected, and there are at least two competing explana-
tions: Either blacks are more prone to violate probation, or 
supervisors are racist. It is up to the probation office to demonstrate 
the former; the test shifts the burden of argument. However 
(Freedman, 2009: 29–30)Suppose the citation process violates the 
independence assumption in the following manner. Probation offi-
cers make contact with probationers on a regular basis. If contact 
leads to a citation, the probability of a subsequent citation goes up, 
because the law enforcement perspective is reinforced. If contact 
does not lead to a citation, the probability of a subsequent citation 
goes down (the law enforcement perspective is not reinforced). This 
does not seem to be an unreasonable model; indeed, it may be far 
more reasonable than independence. 

More specifically, suppose the citation process is a “stationary Mar-
kov chain.” If contact leads to a citation, the chance that the next case 
will be cited is .50. On the other hand, if contact does not lead to a 
citation, the chance of a citation on the next contact is only .10. To 
get started, we assume the chance of a citation on the first contact is 
.30; the starting probability makes little difference for this 
demonstration. 

Suppose an investigator has a sample of 100 cases, and observes 
seventeen citations. The probability of citation would be estimated as 
17/100 ¼ .17, with a standard error of √.17 " .83/100 ¼ .038. 
Implicitly, this calculation assumes independence. However, Markov 
chains do not obey the independence assumption. The right standard 
error, computed by simulation, turns out to be .058. This is about 
50% larger than the standard error computed by the usual formula. 
As a result, the conventional t-statistic is about 50% too large. For 
example, a researcher who might ordinarily use a critical value of 2.0 
for statistical significance at the .05 level should really be using a 
critical value of about 3.0. 

Thus, a difference that is significant under the assumption of random 
sampling turns out not to be significant under a Markov chain model. 
What is important to note is that neither the independence nor the 
Markov chain assumption represents a material fact of the citation 
process. The Markov chain model might be more realistic but it remains 
an idealisation the adequacy of which has to be assessed in the light of 
the purpose of the inference. What is good enough for one purpose may 
be hopelessly inadequate for another. 

Statisticians sometimes point out that assumptions such as IID can be 
tested (e.g., Spanos, 2010). This is true, of course, but it doesn’t help 
with the present problem. Such tests are statistical tests and thus equally 

proceed against probability models that contain large numbers of sig-
nificant idealisations. As long as we use modern statistical tools in 
inductive inference, we won’t get around the problem of idealisation. 

As above, there is a methodological issue lurking here that is as 
important to practitioners as it is challenging to philosophers of science: 
how do we determine, especially in the absence of knowledge of the 
‘true model’, whether the falsehood we are using is good enough for the 
purpose at hand?10 Sometimes we will be able to determine which 
idealisations have worked with hindsight, but are there any ways to tell 
before the fact which idealisations are likely to work? Again, this is an 
issue the Material Theory prevents us from seeing clearly because of its 
exclusive focus on facts as drivers of inductions. 

Thus: (2) idealisations and (3) purposes are additional drivers of 
induction. 

5. The normative nature of inductive inference 

Purposes are, of course, already normative elements in a more 
complete Material Theoryþ of induction. In this section I will add more 
normative drivers. Specifically, ethical norms, methodological norms, 
and conceptual norms, will be shown to play significant roles in 
inductive inferences. We will again also see how Norton’s exclusive 
focus on the material facts of induction prevents us from seeing 
important methodological issues. 

5.1. Ethical norms 

One major argument about how ethical norms enter inductive 
inference is quite old and very well known among philosophers of sci-
ence. I would also say that it is widely accepted among (contemporary) 
philosophers of science, but Norton explicitly rejects it. So let us 
rehearse the argument and address Norton’s criticism. 

The argument is, of course, the argument from inductive risk that 
was introduced in Richard Rudner’s ‘The Scientist Qua Scientist Makes 
Value Judgments’ (Rudner, 1953). The argument, in a nutshell, is the 
following. Inductive inference always involves a risk of error.11 The 
error is of two possible types. A scientist can accept a hypothesis that is 
in fact false (a ‘false positive’), or he can reject a hypothesis that is in fact 
true (a ‘false negative’). There is a trade-off relationship between the 
two types of error, as one can be controlled completely at the expense of 
the other. If one never accepts new hypotheses, the risk to accept a false 
hypothesis is zero but one is certain to miss out many true hypotheses 
and vice versa. Scientists therefore have to make up their minds how 
best to trade off the two types of risk. Rudner now argues that the de-
cision should be made on a consideration of the relative severity of the 
consequences to which each type of error is likely to lead. What is worse: 
poisoning or killing patients with drugs that aren’t safe or foregoing the 
benefits of new treatments that are? Risking a planet-destroying chain 
reaction or foregoing the benefits of having a weapon with which 
fascism could most certainly be snuffed out? Finally, it is value judge-
ments that guide scientists’ assessments of the importance of the 
consequences. 

Norton rejects the argument on two grounds (Norton, forthcoming: 
Ch. 5, x5). First, he argues that these kinds of value judgements are 
rarely made in scientific practice. Most research is too far away from 
potential applications so that considerations concerning consequences 
are moot. Norton argues, second, that Rudner equivocates between two 

10 Parker, 2009 makes some advance on this issue.  
11 Strictly speaking, I would argue that ampliative inference always involves 

what I’d like to call inductive uncertainty rather than risk. As we have seen 
above, the difference between uncertainty and risk is that in the latter case, 
outcome spaces and probabilities are known. Apart from well-designed and 
executed randomised trials, few methods generate probabilities and so situa-
tions of inductive risk are in fact very rare. 
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senses of the word ‘scientist’. In the narrower sense, according to Nor-
ton, ‘a scientist is merely someone who investigates nature, reporting 
what bearing the evidence has, with indifference to the broader human 
ramifications’ (Norton, forthcoming: Ch. 5, 10). Even when a hypothesis 
(e.g., about the safety of a drug or the absence of a planet-destroying 
chain reaction) has potential consequences, their mere acceptance or 
rejection of it does not. A scientist in the broader sense is ‘someone who 
practices science and monitors the import of his or her work within the 
wider human society’ (Rudner, 1953: 11). When acting as a scientist in 
this broader sense, her actions have of course important consequences 
and thus should be guided by value judgements. However, according to 
Norton, virtually all the work of scientists proceeds in the narrow mode. 

I have a certain sympathy for Norton’s first point. It is plainly not the 
case that scientists (individuals or groups12) are always in the position to 
anticipate the consequences of accepting hypotheses. He is of course 
right to say that the acceptance of the hypothesis that electrons are half- 
spin particles involves evidence and not value judgements. But I disagree 
that ‘Virtually all the work of scientists proceeds in this mode’ (Rudner, 
1953). Virtually all social research has direct implications. And it’s not 
just social science. The same is true of much of psychology, biomedical 
research and epidemiology, engineering, AI and computer science, 
environmental science and climate science. There are two factors that 
influence whether values play a role in inference. One is human interest. 
The more we are interested in a research result going one way or 
another, the more likely will value judgements play a role in inductive 
inferences to the results (Dupr!e, 2007). That the hypothesis that elec-
trons are half-spin particles can be accepted without thinking too much 
about values has little to do with the scientific nature of the hypothesis 
and everything with the fact that the result does not matter to us in any 
way.13 The second factor is effect size. Even though the problem of 
inductive uncertainty obtains in every case, when effects are huge, 
making an error of either type is so highly unlikely that the influence of 
value judgements is minimal. Effects in the sciences mentioned above 
tend to be quite small, however, and so the issue of how to trade off the 
two types of error remains an important one. 

Whether hypotheses, the truth or falsehood of which matters to us, 
and small effect sizes, are frequent or rare is an empirical question that 
cannot be determined by philosophical analysis. It seems to me that this 
kind of research is not too infrequent. But the point is: since it exists, a 
theory of induction that is able to accommodate values is more generally 
applicable than one that is not able to do so. 

I am happy also to accept Norton’s distinction between the narrow 
and the broad sense of a scientist but disagree that in the vast number of 
her actions, a scientist can be absolved from taking responsibility. Even 
if at the end of the day it is regulators and policy makers who translate 
scientific findings into regulations and policies, their actions essentially 
rely on scientific advice. A scientist contributing to a consensus, say, 
about anthropogenic climate change or the safety and efficacy of a new 
drug is as responsible for the consequences of a regulation or policy, to 
the extent that these consequences are foreseeable, as the regulator or 
policy maker because she co-determines the decision. 

In a recent paper I have argued that normative considerations are 
among the ‘pragmatic criteria’ used to infer a hypothesis from the evi-
dence. Specifically (Reiss, 2015, p. 356; emphasis original): 

Economic and other normative considerations: take into account eco-
nomic and other costs and benefits when deciding to stop or continue 
probing the indirect support for a hypothesis. Causal inquiry does not 
come for free. There are direct, opportunity, and ethical costs. These 
costs have to be traded off against the benefits of reducing uncer-
tainty. The benefits of reducing uncertainty consist in the reduced 
chance of accepting a false or rejecting a true hypothesis. There are 
no strict rules on how to optimize the trade-off, and people holding 
different values will differ in their assessments. What is clear, how-
ever, is that a reasonable trade-off will seldom entail an indefinite 
continuation of challenging the indirect support for a hypothesis. 

At a higher level of resolution, the ‘default-and-challenge’ rule plays 
an important role. Many scientific communities adopt community-wide 
standards for trading off the two types of error, for often the injunction 
not to accept more than 5% false positives. Individual scientists accept 
that as the default rule.14 But if there are case-specific reasons to believe 
that the standard will lead to poor results in the given case, it should be 
amended. For example, if a new disease appears that is particularly 
deadly, it will often be reasonable to loosen the standard temporarily, as 
it will make sense to tighten it up for drugs that do not promise much 
medical benefit (so-called ‘me-too drugs’).15 

I should explain in more detail why I maintain that norms are actual 
drivers of inductions as opposed to, say, rules that influence the strength 
or cogency of inductive arguments.16 Drivers of inductions are that 
which enable and justify inductive inferences. The term is meant to 
comprise all necessary ingredients to arrive at conclusions and provide 
sufficient reasons for it. In deductive arguments, premisses play an 
essential role of course. I could not infer (iv) x ¼ 25 without, say, the 
premisses (i) x ¼ a þ b, (ii) a ¼ 10; (iii) b ¼ 15. But I also couldn’t infer 
the result without rules such as the substitution rule according to which 
it is permissible to substitute for equivalent expressions. Rules are thus 
important drivers of deductive inferences. Ethical (and, as we shall see, 
methodological and conceptual) norms are analogous ingredients of 
inductive inferences. Hypothesis tests do not yield any conclusion one 
way or another without assuming a standard of significance. Otherwise 
we have a bunch of data but no inference. 

Scientists cannot justify adopting one standard rather than another 
without invoking ethical norms, as I have pointed out above. The de-
cision cannot be made on the basis of epistemic considerations alone. 
Suppose we lived in an ideally stochastic world in which every event is 
governed by exact probabilistic laws. If we adopted a 5% significance 
level standard in such a world, we would know that every twentieth of 
our hypotheses is false. But why should we accept just that number 
across the board? Appeal to truth conduciveness might lead one to think 
that the lower the significance level, the lower number of false hy-
potheses that end up among the accepted hypotheses. But of course, the 
smaller that number, the larger the number of true hypotheses we do not 
accept. So does an exclusive concern for truth lead us to accept more 
false hypotheses or not to accept true hypotheses? Concern for truth 
alone does not settle the issue, ethical norms do. 

Thus: (4) ethical norms are additional drivers of inductions. 

5.2. Methodological norms 

As pointed out above, all statistical inference proceeds against 
probability models. While this is true of all modern statistical inference, 
different statistical paradigms dictate different rules of inference, 
require the making of different sets of assumptions and have different 

12 Harry Collins and Robert Evans argue in a recent book that the argument 
from inductive risk fails in part because individual scientists do not accept 
hypotheses, but produce research results (Collins & Evans, 2017). They advo-
cate the establishment of a group of experts called ‘The Owls’ tasked with 
reviewing all the evidence concerning some topic and coming to an assessment 
of the consensus on that topic. The Owls would use value judgements in their 
assessment, thus the scientists don’t have to.  
13 To be more precise, it does matter to us that we know the spin number of 

electrons, but it does not matter what that number is. 

14 So far I agree with Levi, 1960. 
15 ‘Me-too drugs’ have little to do with the ‘me-too movement’ but are simi-

larly controversial. For more on these drugs, see Reiss, 2010 and Reiss and 
Kitcher, 2009.  
16 Thanks to an anonymous referee for pointing out the distinction. 
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endpoints. Consider the debate between classical and Bayesian statisti-
cians about stopping rules. Suppose a scientist offers a statistician a set 
of 100 IID (and normally distributed) observations and asks her to test 
the hypothesis that the population mean is different from zero (see 
Berger & Wolpert, 1988, p. 74 for this example). The sample mean is 0.2. 
Is this evidence against the null hypothesis? 

Classical and Bayesian statistics give different instructions for how to 
proceed in addressing the question. A classical statistician will have to 
ask why the scientist stopped after collecting 100 observations. 
Depending on the answer, she will draw different inferences. The result 
might be significantly different from zero under one stopping rule but 
not under another. This is because different stopping rules define 
different outcome spaces, and in classical statistics the full outcome 
space enters the calculation of the test statistic. By contrast, the Bayesian 
test statistic depends only on the likelihood ratio. Stopping rules is 
therefore irrelevant. 

The issue of stopping rules is controversial and more complex than 
suggested by this simple example (see for instance Mayo, 1996; Mayo & 
Kruse, 2001; Steel, 2003; Steele, 2013). But what the example shows is 
that different statistical paradigms license different inferences, holding 
the background of material facts fixed. The material facts of this case are 
not disputed between classical and Bayesian statisticians. And yet, 
classical and Bayesian statisticians will (generally) use different sets of 
inputs and different inference rules and come to different conclusions. 

Importantly, the paradigm constrains the kinds of questions that can 
be addressed legitimately with its resources. Another bone of contention 
between classical and Bayesian statisticians is the base-rate fallacy. 
Bayesians have accused classical statisticians of committing the fallacy, 
i.e., of ignoring the relative sizes of population subgroups when 
assessing the likelihood of contingent events involving these subgroups 
(Howson, 1997; Howson & Urbach, 2006). Classical statisticians 
respond that the example that appears to show that classical testing 
involves an instance of the fallacy in fact has none of the features of a 
classical test (Spanos, 2010). What is uncontroversial is that classical 
tests license inferences only about the properties of the populations from 
which the data were sampled; Bayesians make inferences about the 
probabilities of hypotheses. 

There is no material fact in the world that could help us determine 
whether classical or Bayesian statisticians are right about any of these 
matters. Arguments in support of either (or any other) paradigm involve 
normative considerations about the appropriateness of methodological 
standards as well as the desirability of goals and purposes of the inquiry 
(Steel, 2005). Without such normative input, inductions could not get 
off the ground, at least not in modern statistics. 

Thus: (5) methodological norms are additional drivers of inductions. 

5.3. Conceptual norms 

Conceptual norms can play a very similar role as the methodological 
norms discussed in the previous subsection. They influence the infor-
mational requirements for an inference and what can be inferred. But 
material facts alone do not determine the appropriateness of conceptual 
norms. 

The concept of cause is a case in point. Consider the following re-
marks made by Jacob Henle, a nineteenth-century German physician, 
about causes in medicine (Henle, 1844, p. 25, quoted from Carter, 2003, 
p. 24): 

Only in medicine are there causes that have hundreds of conse-
quences or that can, on arbitrary occasions, remain entirely without 
effect. Only in medicine can the same effect flow from the most 
varied possible sources. [...] This is just as scientific as if a physicist 
were to teach that bodies fall because boards or beams are removed, 
because ropes or cables break, or because of openings, and so forth. 

Henle wrote in defence of the germ theory of disease according to 

which causes were necessary universal conditions for their effects (i.e., 
the diseases in question). Thinking about causes in this way was 
extraordinarily successful in the second half of the nineteenth century 
and has led to the discovery — and eventually treatment — of many 
diseases. But towards the end of the century the theory ran into anom-
alies, essentially due to cases where a cause appeared to be present but 
not the disease and vice versa. 

Conceptual norms help to determine what kind of evidence is rele-
vant to the evaluation of a hypothesis. If a cause is a necessary universal 
condition for its effect, then a given factor can be ruled out as a cause for 
a given effect if there are cases in which the effect is present and the 
cause is not and vice versa. It also tells us what kinds of inferences are 
licensed. Again, if a cause is a necessary universal condition, we would 
expect, for instance, the effect to disappear after the cause has been 
eliminated. 

Material facts determine whether a factor of interest (such as a 
microorganism) is a cause given a concept of cause, but they do not 
determine which of a number of alternative concepts to accept in the 
first place. This is because a cause is, first and foremost, a useful factor. 
Michael Scriven, for instance, argues (Scriven, 1966, p. 256): 

When we are looking for causes, we are looking for explanations in 
terms of a few factors or a single factor; and what counts as an 
explanation is whatever fills in the gap in the inquirer’s or reader’s 
understanding. 

I would use a broader set of purposes but agree with the general 
point: a cause is any factor that is useful in view of certain kinds of 
purposes such as explanation, prediction, intervention, diagnosis of 
failure, attribution of praise and blame. Material facts of course help to 
assess whether a given factor can be used, say, to predict or explain 
outcomes. But it is also norms concerning the desirability of these goals 
and purposes and what their attainment means in a given context that 
shape our standards of conceptual adequacy. 

Thus: (6) conceptual norms are additional drivers of inductions. 
All three examples of norms as drivers of inductions discussed in this 

section lead to what is called ‘fact-value entanglement’ in science 
(Putnam, 2002; Reiss, 2017). Again, there are exciting methodological 
questions to be asked in this context but that will be ignored when the 
focus is on material facts as exclusive drivers of inductions: Is it a good 
idea to reduce the influence of values to a minimum (for instance, by 
ignoring normative drivers of inductions)? If values are a necessary 
element in inductive inference (or scientific practice more generally), 
how do we decide which sets values to use? How do we manage the 
influence of values in science? Which constituencies should scientists 
respond to when deliberating about the proper role for values in 
inference? 

6. Conclusions 

What I hope to have established in this paper are the following three 
claims:  

A. Norton is correct in his negative claim that formal theories of 
inductive inference fail.  

B Norton is also correct in his positive claim that material facts play the 
role of drivers of inductions.  

C But Norton is incorrect in assuming that material facts are the only 
drivers of inductions. There are at least six additional drivers, viz.:  

i Theories  
ii Idealisations  

iii Purposes  
iv Ethical Norms  
v Methodological Norms  

vi Conceptual Norms. 
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Any viable Material Theoryþ of induction will have to incorporate 
these elements. 
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