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abstract. This paper examines some recent defences of the princi-
ple of the common cause (PCC) against Elliott Sober’s famous coun-
terexample. There are two lines of attack: attempts to defuse the
counterexample, that is, to show that the scenario described by Sober
only apparently conflicts with the PCC; and attempts to demonstrate
that the counterexample has no practical consequences. I show in this
paper that there are problems with both strategies. In response, I for-
mulate an alternative version of the principle that avoids the known
counterexamples and that makes its status as fallible epistemic prin-
ciple explicit.

1 Introduction

Time series, that is, time-ordered sets of observations on a random variable
or random variables, are of fundamental importance for empirical inferences
in sciences as diverse as neurophysiology, climatology, epidemiology, astro-
and geophysics and many of the social sciences. In this paper I shall argue
that a number of particularities of time series pose serious difficulties for
one of the most prominent kinds of account of causal inference: probabilis-
tic theories. A core assumption of probabilistic theories is the principle of
the common cause, according to which a correlation between two variables
is indicative of a causal connection between these variables. “Nonsense
correlations”—i.e., correlations that are artefacts of the statistical proper-
ties of the variables or that obtain for other non-causal reasons—pose an
obvious problem for probabilistic theories.

Despite the recognition of the problem of nonsense correlations, prob-
abilistic methods of causal inference have become increasingly popular in
recent years. This has triggered some discussions about the seriousness of
the problem. Some authors have tried to show that it is a mere pseudo-
problem and that the principle can be saved once the notion of “correlation”
is clarified. Others have accepted the genuineness of the problem but denied
that it has serious methodological implications.
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Here I shall show that the problem of nonsense correlations is both seri-
ous as well as ubiquitous in all areas of science where time-series matter. In
response, I try to formulate a version of the principle of the common cause
that avoids the nonsense correlation issue and, moreover, makes explicit its
status as fallible epistemic principle. The lesson to draw from this discus-
sion is that the methodological monism occasionally proposed by defenders
of probabilistic theories of causal inference is mistaken: different kinds of
situations require methods of inference to be tailored to the specifics of those
situations if the researcher aims at inferring correct causal claims.

Let us start with some essential definitions. Time series X = {x1, x2, ...,
xT } are time-ordered sets of observations on quantitative characteristics
of an individual or a structure such as a socio-economic system. At each
point in time, the observations are assumed to be drawn from a probability
distribution Pt(X).

It is important to distinguish a time series from the stochastic process
that generates it. The stochastic process is the world line of the persisting
object (a die, a socio-economic structure) itself whereas the time series
records measurements or observations on the process made through (usually
identical intervals in) time. Quantitative characteristics of an object can
assume different values at different points in time and at each point are
assumed to be drawn from a probability distribution ft(x) = Pt(X = x)
that satisfies the usual axioms. X is thus a Random variable. I will represent
a variable by a capital letter X and a value of a variable by a small letter
x.

2 The PCC, British Bread Prices and Venetian Sea
Levels

The principle of the common cause (PCC) lies at the heart of many accounts
of probabilistic causation (cf., ?????).1 Simplifying slightly, it can be stated
as follows:

PCC. If two random variables X, Y are probabilistically dependent, then
either X causes Y , Y causes X or X and Y are the joint effects of a
common cause Z.2

1More recent accounts adopt the related causal Markov condition (CMC) as core
principle. Since in the two-variable case the PCC can be shown to follow from the CMC,
a counterexample to the PCC is a counterexample to the CMC, too. I will thus not
consider it separately here.

2In most formulations the PCC contains also the screening-off condition, which
states that the (full) common cause Z screens off the dependence between X and Y :
P (Y |X, Z) = P (Y |Z). The screening-off condition is controversial itself, and since my
discussion focuses on violations of the first part of the PCC, I omit it here.
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Two variables X and Y are probabilistically dependent just in case P (XY )
6= P (X)P (Y ). A situation in which a probabilistic dependence between two
variables is due to non-causal facts about the properties of the variables con-
stitutes an obvious violation of the PCC. The first systematic discussion of
the problem is due to G. Udny Yule (?). Among philosopher’s of science, a
counterexample introduced by Elliott Sober has been widely discussed (?,
p. 332, ?, pp. 161-2). In this example, X = sea levels in Venice and Y
= cost of bread in Britain. Sober assumes the two variables to increase
monotonically in time (?, p. 334):

Year (t) British Bread Prices (Y ) Venetian Sea Levels (X)
1 4 22
2 5 23
3 6 24
4 10 25
5 14 28
6 15 29
7 19 30
8 20 31

An intuitive test for whether two variables are probabilistically dependent
is asking whether observing one variable is informative about the likely value
the other variable will take. This criterion is clearly fulfilled in this case:
a higher observed Venetian sea level allows us to infer higher British bread
prices and vice versa. And yet, the two variables are ex hypothesi not
causally connected.

In principle there are two strategies for saving the PCC in the light of
Sober’s argument. One could, first, argue that the scenario merely appears
to be a counterexample to the PCC. Though the data Sober provides makes
the underlying variables look probabilistically dependent, in fact they are
not. We make a fallacious inference from sample statistics to population
statistics if we used the PCC in this case rather than a fallacious causal
inference. A second strategy is to argue that the PCC is indeed violated in
the Sober scenario but that it is possible (and indeed, required) to prepare
the data prior to analysis in such a way as to avoid the violation of the
PCC. I will consider each line of response in turn. (The two strategies can
be regarded as complements and used jointly; I’ll separate them analytically
and examine them one by one.)
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3 Fallacious Statistical Inference

In a recent article (?), Kevin Hoover argues that although Sober’s scenario
appears to violate some formulations of the PCC, it does not constitute
a counterexample to the spirit of Reichenbach’s original idea, which was:
“If an improbable coincidence has occurred, there must exist a common
cause” (?, p. 156). To Hoover, understanding the correct meaning of the
word “improbable” is essential here: it means that the observed coincidence
must be something out of the ordinary, something unexpected in order to
be evidence for an underlying causal connection. That the car that just
passes by is a green Volvo, built in 1990, is in some sense improbable—
out of all cars that could have driven by, why should it be exactly this
green Volvo?—but it is nothing out of the ordinary. If, by contrast, all the
members of a theatre troupe develop identical symptoms of food poisoning
after a common meal in the theatre refectory, something out of the ordinary
has happened.

In order to flesh out the meaning of “improbably” more formally, Hoover
distinguishes between two stages of inference from observations to underly-
ing causal relations. In the first stage, statistical inference, the reasoning
proceeds from observed sample frequencies to underlying probabilities. In
the second, from probabilities to causal relations. The PCC pertains to the
second step: it says that once can infer from a fact about probabilities—
the probabilistic dependence between two variables—to a fact about causal
relations—either one variable causes another or there exists a common case.
Sober mistakenly infers from facts about sample frequencies that the two
series are probabilistically dependent, which, thus Hoover, they are not.

Statistical inference, according to Hoover, is always conducted against
a probability model, that is, a hypothesis about the stochastic process re-
sponsible for the generation of the data; that model is accepted, which is
most likely to be true, given the data (pp. 530f.). Claiming that Sober’s
data violate the PCC makes a fallacious inference at this stage. There is no
doubt that the two variables are associated at the level of the sample. That
can be readily verified by calculating the sample correlation coefficient:

(1.1) rXY =
∑

(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2

∑
(yi − ȳ)2

,

where a bar above a variable denotes the sample mean. For the data Sober
provides, rXY = .99. But, says Hoover, we cannot readily take this as
evidence that the underlying population correlation:

(1.2) ρXY =
E[(xi − µX)(yi − µY )]√
E(xi − µX)2E(yi − µY )2

=
σXY

σXσY
,
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where E denotes the expected value of the expression in parentheses, the
µ’s are the population means of X and Y , σXY denotes the covariance
between X and Y and σX and σY are the standard deviations of X and Y ,
is positive too. (“Correlation” and “probabilistic dependence” are related
but not strictly equivalent concepts. If P (XY ) = P (X)P (Y ), then ρXY = 0
(if X and Y are independent, then they are uncorrelated) but the reverse
is not necessarily the case.3)

In order to understand the details of this argument, a number of concepts
from the analysis of time series has to be introduced (cf. ?, pp. 45f. for
the following definitions). The j th autocovariance of a variable Yt of some
process (denoted γjt) is defined as:

(1.3) γjt = E[(Yt − µt)(Yt−j − µt−j)],

In other words, the jth autocovariance of Yt is the covariance of Yt and
Yt−j . Further, if neither the mean nor the autocovariances of Yt depend on
time t, then the process of Yt is said to be covariance- or weakly stationary:

E(Yt) = µ for all t (1.4)
E[(Yt − µ)(Yt−j − µ)] = γj for all t and any j. (1.5)

A time series is said to be strictly stationary if, for any values j1, j2, ..., jn,
the joint distribution of (Yt, Yt+j1 , Yt+j2 , ..., Yt+jn), depends only on the in-
tervals separating the dates (i.e., the j’s) and not the date t itself. Sober’s
series are non-stationary if only because the mean of the process increases
monotonically with every observation.

A time series can be non-stationary in several ways. For example, they
can be stationary around a deterministic trend, as in:

(1.6) Yt = δt + εt,

where εt ∼ N [0, σε]. Such a series is called “trend-stationary”. Another
form of non-stationarity obtains when past errors accumulate, as in:

(1.7) Yt = Yt−1 + εt,

with ε as before. A series such as (1.7) is called “integrated”. Let the
difference operator be ∆Xt = Xt−Xt−1. The difference operator transforms
variables measured in levels into variables measured changes and can be

3Some distributions may have expectations such that σXY = E(XY )−E(X)E(Y ) = 0
even though P (XY ) 6= P (X)P (Y ). For the bivariate normal, the concepts are equivalent
though.
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applied several times: ∆2Xt = ∆(∆Xt). If differencing d times renders an
integrated series stationary, it is said to be integrated of order d. More
formally, (p. 543, emphasis original):

Let d be the minimum integer such that {∆dXt} is weakly stationary. Then {Xt} is
said to be integrated of order d, which is notated I(d). (By convention, a stationary
time series is notated as I(0).)

Processes such as (1.7) are I(1) or integrated of order 1 and also called
unit-root processes (because the coefficient on Yt is unity) or random walks.

Now, Sober’s makes a mistake in applying the PCC to the data series
he provides because inferring from a sample correlation to a probabilistic
dependence means that one takes the most likely data-generating process
to be stationary.4 However, given the data, the most likely data-generating
process is non-stationary, for example, trend-stationary or integrated. But
that means that a sample correlation or association is no evidence for an
underlying probabilistic dependence. And if the two variables are associ-
ated yet not probabilistically dependent, the antecedent of the PCC is not
satisfied, hence the principle does not apply.

How do we know whether two non-stationary time series are probabilis-
tically dependent? If the series are trend-stationary, Hoover says (p. 541):
“Principle (P) [the PCC] would naturally be applied to the stationary com-
ponents of a pair of trend-stationary series”. For integrated series, the test
is slightly more complicated. If we have two distinct I(1) processes, a linear
combination is usually I(1) too. However, in some cases a linear combi-
nation of two I(1) series can be stationary. Then the series is said to be
“co-integrated” (p. 545):

Two time series {Xt} and {Yt} are cointegrated if, and only if, each is I(1) and a
linear combination {Xt − β0 − β1Yt}, where β1 6= 0, is I(0). (Paraphrased from ?,
p. 571.)

In turn, evidence for two series being co-integrated constitutes evidence
for their probabilistic dependence (p. 547). His reformulated principle reads
as follows (cf. p. 548):5

PCC* If variables X and Y are probabilistically dependent (for instance,
they are each stationary or trend-stationary and correlated with each
other or each integrated and cointegrated with each other), then either

4In fact, it needs to be ergodic. But most series that are stationary are also ergodic
and vice versa, so the exact details are of no concern here. For a discussion, see ?, Ch.
19.

5I changed Hoover’s wording slightly to make it consistent with the remainder of this
paper but without, I hope, distorting his intentions.
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X causes Y or Y causes X, or X and Y are joint effects of a common
cause.

Hoover thus provides an elegant solution to the difficulty raised by Sober’s
scenario. Nevertheless I would like to suggest an alternative. My worry is
the following: defining the PCC in terms of facts about probabilities rather
than sample frequencies deprives the principle of much of its inferential
power and to some extent betrays the motivation behind it. Let me explain
what I mean by this.

We can understand the PCC (as stated) either in a metaphysical reading
or in an epistemic reading. As a metaphysical principle, it would help to
define the notion of causation.6 The problem with the metaphysical reading
is that, Sober’s scenario aside, there are a number of clear-cut counterex-
amples, such as:7

• Colliders. When two variables cause an effect, the two can be prob-
abilistically dependent conditional on the effect even though they are
unconditionally independent.

• Mixing. When populations from different probability distributions are
mixed, dependencies can arise even though the homogenous popula-
tions are probabilistically independent (see for instance ?).

• Laws of coexistence. Frank Arntzenius has pointed out that many
laws of physics can be read as laws of coexistence without posing
the need for a causal explanation. He mentions Maxwell’s equations,
Newtonian gravity, the Pauli exclusion principle and relativistic laws
of coexistence (?).

• ...

The PCC thus cannot serve as a metaphysical principle in a definition
of causation. Indeed, few philosophers would attempt to define causation
in such a way today. It is rather used as an epistemic principle for causal
inference. As such, however, the PCC as formulated is both too strong and
too weak.

Using probabilistic dependencies rather than empirical correlations de-
prives the principle of much of its inferential power. One reason is that

6The PCC by itself obviously gives only a necessary, not a sufficient condition for
causation. The reverse condition, in some versions called “faithfulness”, is less plausible
than the PCC, and I won’t discuss it here.

7Hoover is fully aware that there are situations in which the PCC does not hold. See
for example ?.
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probability distributions do not always exist (as Hoover is aware, see pp.
531f.). They arise rather in fairly special circumstances, in what Ian Hack-
ing called a “chance set-up” or Nancy Cartwright’s “nomological machines”
(??). A chance set-up or nomological machine is essentially a persistent
structure that can operate unimpededly and thus allow the generation of
probabilities. But there is no reason to restrict the PCC to such special
situations. Indeed, at least in some of the examples that are usually given
to motivate the principle no such arrangement seems to be in place: the
theatre troupe (we suspect a common cause to be responsible for the si-
multaneous appearance of symptoms of food poisoning in all the members
of a theatre troupe after taking a joint meal completely independently of
whether or not they regularly eat in the same place or such poisonings occur
regularly); two students handing in the exact same term paper; correlations
between phenotypic traits in evolutionary biology.

Second, using the PCC as formulated above presupposes that statistical
inference is always prior to causal inference (perhaps in a temporal sense,
but definitely in an epistemic sense: we need to know probabilities in order
to use the principle for inferring causal relations). But such neat division
into two stages of inference, and such that one is prior to the other, is not
always possible and surely not always the most efficient way to do things.
Although I don’t think many would disagree (and I know Hoover would not
disagree), I would like to point out that background knowledge, including
causal background knowledge often plays a role in inferring probabilities.
In this sense knowledge about probabilities cannot be prior to knowledge
about causal relations. Judging whether or not probabilities exists is a case
in point: we can determine whether a chance-set up or nomological machine
is in place on the basis of the causal knowledge about the situation. We
can use that kind of knowledge for determining the potentially relevant
variables. And we can use that kind of knowledge in order to determine
whether or not time series are stationary.

Suppose we would like to determine the causal efficacy of a training pro-
gramme and therefore need to determine average test results X. Our data
are X = (x1 = 153, x2 = 157, x3 = 161, x4 = 168, x5 = 175, x6 = 183).
Suppose further that a greater subscript means “measured later in time”
and thus that the data constitute a time series. It is obvious that whether
or not we can use this time series for certain kinds of inferences depends
on how the measurements were made. If, for example, the data are the
results of a test the students sat on a specific date, and the different times
are the times at which we finished marking the test (say, at t1 = 10:25,
t2 = 10:27, t3 = 10:29 etc.) we are entitled to draw an average over time
and use it for causal inference. We simply happened to mark the test of
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the worst-performing student first, then that of the second-worst perform-
ing student and so on. Whether data are arranged in this order or in
another order does not make a difference. If, however, the relevant times
are t1 = 2000, t2 = 2001, t3 = 2002 etc. and data record a student’s perfor-
mance on subsequent (though identical) tests, we have to respect the order
and drawing an average would not be meaningful. This is because, as we
know, students’ performance may change over time and the effectiveness
of training programmes may accumulate. But there is nothing in the data
themselves that tells us this. Moreover, causal background assumptions
will often solve the statistical and causal inferential problem at once. If
we judge on their basis that sea levels and bread prices cannot be causally
connected, it simply does not matter whether they are correlated a sample
or population level.

Using causal background knowledge for statistical inference would only
be a problem if the contention was that knowledge about probabilities is
always prior to knowledge about causes (say, because we wanted to use
probabilities for a definition of causation). But we could subscribe to a
more modest claim: there are situations in which after having successfully
used our (causal and non-causal) background knowledge for statistical in-
ference, we can use the PCC for further causal inference. Of course, I agree.
But even in such situations using the PCC may be unnecessary and cum-
bersome. Often, our causal background knowledge will allow us to make the
causal inference without worrying about probabilities. To use an example
of Hoover’s (p. 547), it is a very unlikely coincidence that his daughter
should have been born on the day the Challenger space shuttle blew up.
But are we looking for a common cause here? Of course not. Our causal
background knowledge tells us immediately that this is a mere coincidence
(rather than a genuine co-occurrence of events that warrants the search for
causal relations). We do not detour via judgements about probabilities in
such cases.

The principle as stated by PCC* is also too weak because the problems for
the metaphysical reading of course double up as problems for the epistemic
reading—unless one qualifies the latter. Colliders for instance are a serious
problem for practical causal inference because we often collect data with
a specific purpose in mind. But this may mean that everybody in that
population has a specific characteristic, say Z. Now, if X and Y are both
causes of Z, they are probabilistically dependent conditional upon Z even
though (let us suppose) X and Y are unconditionally independent. The
problem is that often we may not notice that we sampled only members of
the populations in which Z is present. Importantly, this is a problem at the
level of populations, not samples. And: it may obtain for stationary as well
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as non-stationary variables. Similarly, problems regarding heterogeneous
populations are a serious problem for practical inferences.

Before presenting my own proposal for a reformulated PCC, let me discuss
the second strategy to deal with Sober’s scenario, data preparation.

4 Data Preparation

In a discussion note on Hoover’s paper Daniel Steel disagrees with Hoover’s
analysis that the Sober scenario is a problem for statistical rather than
causal inference. With Spirtes, Glymour and Scheines he thinks that the
problem in Sober’s case is just a special case of mixing. He provides the
following argument (?). Central to his demonstration is the so-called mixing
theorem, which can be applied to time series (p. 310). For the simple case
of T = 2 it reads:

Mixing Theorem. Let P (XY ) = nP1(XY ) + mP2(XY ), where n and m
are real numbers greater than zero such that n+m = 1. Let P1(XY ) =
P1(X)P1(Y ) and P2(XY ) = P2(X)P2(Y ). Then P (XY ) = P (X)P (Y )
if and only if

P2(X)P2(Y ) + P1(X)P1(Y ) = P1(X)P2(Y ) + P2(X)P1(Y )

An important corollary is the following:

Corollary. Let P (XY ) = nP1(XY ) + mP2(XY ), where n and m are real
numbers greater than zero such that n + m = 1. Let P1(XY ) =
P1(X)P1(Y ) and P2(XY ) = P2(X)P2(Y ). Then P (XY ) 6= P (X)P (Y )
if and only if P1(X) 6= P2(X) and P1(Y ) 6= P2(Y ).

As briefly mentioned above this shows that dependencies can arise when-
ever populations from different probability distributions are mixed, even
though the homogenous subpopulations are independent. It is important to
note that what matters here is that the mixed population is probabilistically
heterogeneous independently of whether or not it is causally heterogeneous.
Some arguments to the effect that this case isn’t one of mixing because two
processes may be causally identical (because time is not a cause) and yet
does the problem associated with the Sober scenario arises are somewhat
beside the point (this argument has been made for instance by ??).

What is wrong with the Spirtes, Glymour and Scheines/Steel proposal in
my view is that it suggests the wrong methodological lessons. The natural
response to a problem posed by the heterogeneity of populations is, to re-
quire that populations be made homogenous prior to analysis. We can, for
example, regard each xt (for all t = 1, 2, ..., T ) in the time series as drawn
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from a different variable Xt (for all t = 1, 2, ..., T ) and analyse only con-
temporaneous probabilistic relationships.8 Alternatively we can condition
each variable on its past and analyse the probabilistic relations between
the conditional variables Xt|Xt−1 etc.9 Another alternative would be to
difference the data prior to analysis or to use another preparation method
in order to homogenise the variables. This seems to be exactly what the
proponents of this solution have in mind. Clark Glymour, for one, says (?,
pp. 73f., emphasis added):

Applying the program [that incorporates a version of the PCC as core assumption]
to real data requires a lot of adaptation to particular circumstances: variables must
often be transformed to better approximate normal distributions, decisions made
about modeling with discrete or continuous variables, data must be differenced to
remove auto-correlation, and on and on.

Similarly, Steel writes (?, p. 314):

[T]he above discussion illustrates how researchers interested in drawing conclusions
from statistical data can design their investigation so that counter-examples like
Sobers are not a concern. For instance, if the series is non-stationary but trans-
formable into a stationary one via differentiating with respect to time, then differ-
entiate. Then PCC can be invoked without concern for the difficulty illustrated by
the Venice-Britain example.

The idea seems to be that data can always be suitably prepared (by, say,
conditioning on time or on series’ past or by prior differencing or detrending)
before using the PCC for analysis. Thus, we can reformulate the PCC as
follows:

PCC** If two suitably prepared random variables X, Y are probabilisti-
cally dependent, then either X causes Y , Y causes X or X and Y are
the joint effects of a common cause Z.

Unfortunately, data preparation does too much and too little at the same
time. Regarding only contemporaneous statistical relations, conditioning
on the past of variables and differencing, detrending et al. all result in the
loss of important long-run information that a prudent statistician should
make use of (see for instance ?, Sect. 7.4). The statistical concepts of
cointegration, which Hoover discusses at length, and co-breaking (see for
instance ?) were developed specifically in order to deal with Sober-like
situations while retaining the long-run information contained in the time
series. Consider the following. Unit-roots processes are sometimes said to

8An anonymous referee, for example, wrote: “What two variables [this relates to
my X and Y ]? What we have is two times series: Xt, Xt−1, Xt−2, ..., Xt−n and
Yt, Yt−1, Yt−2, ..., Yt−n. There are 2n + 2 variables!”

9This seems to be suggested by Frank Arntzenius, see ?, section 2.3.
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be subject to stochastic shifts because the error term accumulates over time.
By contrast, when deterministic shifts occur, parameters of a process such
as its mean, variance or trend change. In recent econometrics, methods
have been developed that exploit information about common shifts in two
or more series for causal inference. Through differencing, however, this
information can be lost. Consider the following series:

Xt = αX + βXδt + εXt
(1.8)

Yt = αY + βY δt + εYt
, (1.9)

where the δ denotes a common trend. When there are shifts in the value
of that coefficient, these common “breaks” can be detected by statistical
methods. The breaks will disappear, however, when the series are differ-
enced. In other words, if the non-stationarity of a series is due to shifts
in deterministic coefficients, series should not be differenced prior to causal
analysis (even though such series may be, as Steel demands, non-stationary
and transformable into a stationary one via differencing). The point is that
prior data preparation of the kind discussed here ignores that we are dealing
with continuous and persisting processes here, and not merely with contem-
poraneous events or changes, and the analysis methods we use should reflect
just that (?, 165).

While data preparation will often result in information loss, it may not
solve the problem either. Differencing can remove some sources of nonsense
correlation but is often inapplicable. Of course, it is an analytical truth that
differencing removes unit roots. If we have two independent random walks:

Xt = Xt−1 + εXt
(1.10)

Yt = Yt−1 + εYt
, (1.11)

then a regression of the differenced series such as

(1.12) ∆Yt = β∆Xt + νt

will, correctly, find a zero regression coefficient. But unit roots constitute
only one source of non-stationarity, and non-stationarity is only one source
of nonsense correlation.10 Differencing is ineffective when nonsense corre-
lation arise in stationary series. That is, even stationary time series can
appear correlated even though they are ex hypothesi causally independent.
Indeed, in his original article on the problem Yule did not discuss the prob-
lem in the context of non-stationarity. For example, for two series of the

10On the pitfalls of differencing see the papers ??; in defence of a priori differencing,
see ?.
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form:

Xt = θXXt−1 + εXt (1.13)
Yt = θY Yt−1 + εYt , (1.14)

where |θi| < 1 and the εit’s are i.i.d. and zero mean one can show that
nonsense correlations obtain regularly (?, p. 899). As one can see easily,
the mathematical form of the differenced series is exactly the same as that
of the original series. Although in this context, the problem arises to a
somewhat lesser extent—when θ is 0.75, significant correlations obtain in
about 30% of the cases—the problem does obtain despite the fact that
the series are stationary. Something similar happens when time series are
moving averages, as in the following:

Xt =
∑k

j=0 eX,t−j (1.15)

Yt =
∑k

j=0 eY,t−j (1.16)

Even if k is only 5, nonsense correlation results obtain in about a third
of cases (?, p. 902).

Lastly, serial correlation may persist even after differencing, and in fact
will in general persist. In his 2001 paper, Sober discusses an example from
evolutionary biology in which similar developmental sequences evolve inde-
pendently in two lineages (pp. 335ff.). This is also common in time-series
analysis. Series that are integrated of orders higher than 1 will have to be
differenced several times before achieving stationarity. There are series that
are fractionally integrated (i.e., they have a non-integer order of integra-
tion), which can lead to spurious results whenever the orders of integration
sum up to more than 0.5 (?). Such fractional orders of integration can
obviously not be removed by differencing.

Other a priori data preparation methods do not fare better. An alter-
native method to remove non-stationarity is detrending, i.e., subtracting a
linear deterministic trend before the analysing data. However, detrending
too can yield spurious results, namely when the processes are unit roots
(see ?, Sect. 4.3). Lesson: there are no data preparation methods that
can be used prior to systematic statistical (and therefore causal, see above)
analysis. Hence, PCC**, too, fails.

5 Non-Statistical Sources of nonsense Correlations

There are also various non-statistical sources of nonsense correlations. For
example, when variables are connected because of logical, mathematical and
conceptual links, they may be correlated but the correlation is not due to a
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causal connection. Non-causal physical laws may provide yet another source
of correlation. These problems are not peculiar to time series and they are
well recognised in the literature (for a valuable overview, see ?, pp. 52ff.).
For the sake of completeness, let us briefly consider each issue in turn.

When variables have logical links, correlations are not indicative of causal
connections. “Day” may be perfectly negatively correlated with “Night”
but this is because of a logical, not a causal relation. A variable and a
function thereof are highly correlated. Time-series econometrics often uses
logarithms of variables such as money, income and prices. The logarithms
are correlated with the original variables but not for causal reasons. More
serious are conceptual links between variables. Many economic variables
are linked because they have interdependent measurement procedures. For
example, the measurement of some variables is based on the same national
accounts.

There may be other non-causal constraints between variables, for exam-
ple, when two variables are related by budget constraints. Consumption (C)
will be correlated with savings (S) not because they are causally related but
because a third variable, income (I) constrains them by the mathematical
relation C + S = I. Problems of this kind and conceptual relations can be
very serious in time-series analysis, especially in social science applications.

6 Evidence, Eliminative Induction and the PCC

Clearly, there is a core of truth in the PCC. But what is it? In some cases
it does indeed work, just think of Salmon’s famous examples: the theatre
company all of whose members out of a sudden get violently ill; the students
who hand in the exact same term paper; the twin quasars (?, p. 158f.).
Can we formulate the principle in a way as to avoid the counterexamples
discussed here?

The core of it, in my view, is that an empirical or sample correlation
between variables sometimes provides evidence for the hypothesis that these
variables are causally connected. In many cases, of course, the correlation
arises for reasons other than causal connectedness: the sample is small; there
is selection bias; there are logical, mathematical or conceptual relations
between them; they are generated by unit-root processes. If we can rule
out these non-causal accounts for the correlation, then the causal account
is probably true.

In order to formalise this idea to some degree, recall Patrick Suppes’
probabilistic theory of causation (?). He defined an event A as a prima
facie cause of another event B if and only if A precedes B and P (AB) >
P (B). Not every prima facie cause is, however, also a genuine cause. Thus
he defined as spurious cause an event A that is a prima facie cause of
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event B but such that there is a partition π prior to A such that every
element Ci in that partition renders A and B probabilistically independent:
P (B|A,Ci) = P (B|Ci)(for all i). A genuine cause is a prima facie cause
that is not spurious.

Analogously, we can define e as prima facie evidence for hypothesis h if
and only if e stands in an appropriate relationship with h. In the present
case, the appropriate relationship is explanatory: e is prima facie evidence
for h if and only if h, if true, explains e: a causal relation between two
variables (whether direct or due to a common cause) explains the correlation
between the variables.11 e is spurious evidence for h if and only if e is prima
facie evidence and h is explained by an alternative hypothesis ha

i . If e is
prima facie evidence and not spurious, it is genuine evidence.

Thus the PCC reads:

PCC*** The proposition e = “Random variables X and Y are (sample or
empirically) correlated” is prima facie evidence for the hypothesis h
= “X and Y are causally connected”. If all alternative hypotheses ha

i

(e.g., “the correlation is due to sampling error”, “the correlation is due
to the data-generating processes for X and Y being non-stationary”,
“X and Y are logically, conceptually or mathematically related”) can
be ruled out, then e is genuine evidence for h.

There are various advantages of this formulation. First, and foremost,
it is very explicitly formulated as epistemic principle. There is no way to
misread the principle as saying that all correlations must have causal ex-
planations for instance. Unlike previous versions, this formulation makes
evident that the principle is fallible. It nowhere says that the evidence is
conclusive or that the evidence entails its hypothesis. Evidence provides a
reason to believe, not metaphysical certainty. Second, it makes evident that
causal inference is context-dependent. I haven’t said a lot about where the
alternative hypotheses ha

i come from. Usually our background knowledge
about the situation under investigation will determine what plausible can-
didates there are, and how much effort needs to be taken to rule them out.
Third, unlike Hoover’s PCC*, PCC*** is very widely applicable. In partic-
ular, it is applicable to cases of empirical correlation where no probability
distributions exist or where statistical inference may be difficult or cumber-
some. Fourth, unlike Steel’s PCC**, it does not rely on data-preparation
techniques that frequently do more harm than good.

11There are also cases where evidence explains the hypothesis for which it is evidence,
and where a third statement c explains both evidence and hypothesis (see ?). Moreover
there are cases where the evidential relationship is not explanatory (for a discussion, see
?, Ch. 1). My definitions are thus intended to apply only to the present case.
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There may be a residual worry that I throw out the baby with the bath
water. What happens if one of the alternative hypotheses ha

i is true but
X and Y are causally connected nevertheless? But this isn’t a problem
as I make no suggestion to the effect that empirical correlations can be
the only evidence for causal connections. Of course, this is absurd. When
samples are small and statistical tests lack power, one can try to physically
investigate the units. When time series are non-stationary, one can try to
exploit “structural breaks” in the series for causal inference and use tests of
the kind Hoover (?) and David Hendry and his collaborators (e.g. ?) have
developed. In other cases we may be able to improve the quality of the data
and thus ameliorate problems. In yet other cases we may be able to use one
of a host of qualitative methods such as ethnographic methods. Violations
of the PCC are only a problem if one thinks that all correlations need a
causal explanation and if one thinks that the principle is the only or only
appropriate or most important or “core” principle of causal inference. But
it isn’t. It is one of many such principles and has it’s own advantages and
drawbacks. What is important, though, is to keep its limitations in mind.

Thus let me end with an irony. When investigating what kinds of sys-
tems do we have good reason to believe that most or all of the alternative
hypotheses are false? As mentioned above, shifts that render a time se-
ries non-stationary can be of two kinds: “stochastic” and “deterministic”.
Stochastic shifts obtain when error terms accumulate; deterministic shifts,
when deterministic parameters (such as coefficients on trends) change. Sys-
tems where neither kind of change is likely are systems that lack internal
dynamics and that are shielded from outside influences or “closed”. More-
over we want to rule out chance associations and thus require that the static
and closed system persists for a while so that sample sizes are sufficient. We
also want to make sure that the populations in the system are homogeneous,
that variables are well-measured and so on. Now, aren’t these characteris-
tics the characteristics of experimental systems? But if they are, why do we
need the PCC to draw causal conclusions?

Acknowledgements
I’d like to thank Nancy Cartwright, Damien Fennell, David Hendry, Elliott
Sober, three anonymous referees as well as audiences in Kent and Vancouver
for helpful suggestions. Special thanks go to Kevin Hoover who provided
extensive and extremely valuable comments on several drafts of this paper.
Some disagreements remain but the paper profited enormously from the
discussion.

Julian Reiss
Department of Logic and Philosophy of Science, Complutense University,



6. EVIDENCE, ELIMINATIVE INDUCTION AND THE PCC 17

28040 Madrid, Spain.
and
Centre for Philosophy of Natural and Social Science, London School of Eco-
nomics, Houghton St, London WC2A 2AE, United Kingdom.
jreiss@filos.ucm.es


